Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(1): 018504    DOI: 10.1088/1674-1056/23/1/018504
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Chemical synthesis of zinc oxide nanorods for enhanced hydrogen gas sensing

Musarrat Jabeena, Muhammad Azhar Iqbala, R Vasant Kumarb, Mansoor Ahmeda, Muhammad Tayyeb Javedc
a Department of Physics, University of the Punjab Lahore, Pakistan;
b Department of Material Science and Metallurgy, University of Cambridge, England;
c Department of Chemical Engineering, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, Pakistan
Abstract  Zinc oxide (ZnO) nanorods are prepared using equimolar solution of zinc nitrate ((Zn(NO3)2) and hexamethylenetetramine (C6H12N4) by the hydrothermal technique at 80 ℃ for 12 h. Epitaxial growth is explored by X-ray diffraction (XRD) patterns, revealing that the ZnO nanorods have a hexagonal (wurtzite) structure. Absorption spectra of ZnO are measured by UV–visible spectrometer. The surface morphology is investigated by field emission scanning electron microscopy (FESEM). The synthesized ZnO nanorods are used for detecting the 150 ℃ hydrogen gas with a concentration over 1000 ppm. The obtained results show a reversible response. The influence of operating temperature on hydrogen gas detecting characteristic of ZnO nanorods is also investigated.
Keywords:  zinc oxide      hydrothermal synthesis      nanorods      hydrogen gas sensor  
Received:  25 April 2013      Revised:  02 July 2013      Accepted manuscript online: 
PACS:  85.85.+j (Micro- and nano-electromechanical systems (MEMS/NEMS) and devices)  
  85.35.-p (Nanoelectronic devices)  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
Fund: Projected supported by the HEC of Pakistan for international initiative research support programme (IRSIP).
Corresponding Authors:  Musarrat Jabeen     E-mail:  musarrat95@hotmail.com

Cite this article: 

Musarrat Jabeen, Muhammad Azhar Iqbal, R Vasant Kumar, Mansoor Ahmed, Muhammad Tayyeb Javed Chemical synthesis of zinc oxide nanorods for enhanced hydrogen gas sensing 2014 Chin. Phys. B 23 018504

[1] Chen X M, Ji Y, Gao X Y and Zhao X W 2012 Chin. Phys. B 21 116801
[2] Kenanakisa, G, Androulidaki M, Koudoumas E, Savvakis C and Katsarakis N 2007 Superlattices Microstruct. 42 473
[3] Lin S S, Song J H, Lu Y F and Wang Z L 2009 Nanotechnology 20 365703
[4] Zhu Y B, Hu W, Na J, He F, Zhou Y L and Chen C 2011 Chin. Phys. B 20 047301
[5] Li M, Zhang H Y, Guo C X, Xu J B, Fu X J and Chen P F 2009 Chin. Phys. B 18 5020
[6] Chien F S, Wang C R, Chan Y L, Lin H L, Chen M H and Wu R J 2010 Sens. Actuators B 144 120
[7] Ji L W, Peng S M, Su Y K, Young S J, Wu C Z and Cheng W B 2009 Appl. Phys. Lett. 94 203106
[8] Xian M C, Yong J, Xiao Y G and Xian W Z 2012 Chin. Phys. B 21 116801
[9] Wang J X, Sun X W, Yang Y, Huang H, Lee H Y, Tan O K and Vayssieres L 2006 Nanotechnology 17 4995
[10] Yan J F, Zhang Z Y, You T G, Zhao W and Yun J N 2009 Chin. Phys. B 18 4019
[11] Bakhtiar U H, Afaq A, Ahmed R and Naseem S 2012 Chin. Phys. B 21 097101
[12] Li M, Zhang H Y, Guo C X, Xu J B and Fu X J 2009 Chin. Phys. B 18 1594
[13] Fan H B, Zheng X L, Cheng W S, Zhi G L and Yao H B 2012 Chin. Phys. B 21 038101
[14] Zhai H J, Wu W H, Lu F, Wang H S and Wang C 2008 Mater. Chem. Phys. 112 1024
[15] Baruah S and Joydeep D 2009 J. Sol–Gel Sci. Technol. 50 456
[16] Sugunan A, Warad H C, Boman M and Joydeep D 2006 J. Sol–Gel Sci. Technol. 39 49
[17] Yodyingyong S, Zhang Q, Park K, Dandeneau C S, Zhou X, Triampo D and Cao G 2010 Appl. Phys. Lett. 96 73115
[18] Li Y, Cheng C, Dong X, Gao J and Zhang H 2009 J. Semicond. 30 063004
[19] Gayen R N, Dalui S, Rajaram A and Pal A K 2009 Appl. Surf. Sci. 255 4902
[20] Danwittayakul S and Joydeep D 2012 Int. J. Hydrog. Energy 37 5518
[21] Lupan O, Chai G and Chow L 2008 Microelectron. Eng. 85 2220
[22] Ahsanulhaq Q, Umar A and Hahn Y B 2007 Nanotechnology 18 115603
[23] Ahsanulhaq Q, Faiz M, Tabet N and Alam M W 2011 Superlattices Microstruct. 50 173
[24] Zhong W W, Liu F M, Cai L G, Zhou C C, Ding P and Zhang H 2010 Chin. Phys. B 19 107306
[25] Sedky A and El-Suheel E 2012 Chin. Phys. B 21 116103
[26] Stikant V and Clarke D R 1998 J. Appl. Phys. 83 5447
[27] Wu L, Wu Y and Lu W 2005 Physica E 28 76
[28] Maensiria S, Laokula P and Promarak V 2006 J. Cryst. Growth 289 102
[29] Thorat J H, Kanade K G, Nikam L K, Chaudhari P D and Kale B B 2011 J. Mater Sci. Mater Electron. 22 394
[30] Zhang H, Yang D, Li D S, Ma X Y, Li S Z and Que D L 2005 J. Cryst. Growth Des. 5 547
[31] Li Q H, Gao T, Wang Y G and Wanga T H 2005 Appl. Phys. Lett. 86 123117
[1] Molecular dynamics simulation of interaction between nanorod and phospholipid molecules bilayer
Xin Wang(王鑫), Xiang-Qin Li(李香琴), Tian-Qing Liu(刘天庆), Li-Dan Zhao(赵丽丹), Ke-Dong Song(宋克东), and Dan Ge(葛丹). Chin. Phys. B, 2023, 32(1): 016201.
[2] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[3] Phase transition of asymmetric diblock copolymer induced by nanorods of different properties
Yu-Qi Guo(郭宇琦). Chin. Phys. B, 2021, 30(4): 048301.
[4] Improved efficiency and stability of perovskite solar cells with molecular ameliorating of ZnO nanorod/perovskite interface and Mg-doping ZnO
Zhenyun Zhang(张振雲), Lei Xu(许磊), and Junjie Qi(齐俊杰). Chin. Phys. B, 2021, 30(3): 038801.
[5] Surface potential-based analytical model for InGaZnO thin-film transistors with independent dual-gates
Yi-Ni He(何伊妮), Lian-Wen Deng(邓联文), Ting Qin(覃婷), Cong-Wei Liao(廖聪维), Heng Luo(罗衡), Sheng-Xiang Huang(黄生祥). Chin. Phys. B, 2020, 29(4): 047102.
[6] A systematic study of light dependency of persistent photoconductivity in a-InGaZnO thin-film transistors
Yalan Wang(王雅兰), Mingxiang Wang(王明湘), Dongli Zhang(张冬利), and Huaisheng Wang(王槐生). Chin. Phys. B, 2020, 29(11): 118101.
[7] Hydrothermal synthesis and characterization of carbon-doped TiO2 nanoparticles
Zafar Ali, Javaid Ismail, Rafaqat Hussain, A. Shah, Arshad Mahmood, Arbab Mohammad Toufiq, and Shams ur Rahman. Chin. Phys. B, 2020, 29(11): 118102.
[8] High-throughput fabrication and semi-automated characterization of oxide thin film transistors
Yanbing Han(韩炎兵), Sage Bauers, Qun Zhang(张群), Andriy Zakutayev. Chin. Phys. B, 2020, 29(1): 018502.
[9] Zinc-oxide nanoparticle-based saturable absorber deposited by simple evaporation technique for Q-switched fiber laser
Syarifah Aloyah Syed Husin, Farah Diana Muhammad, Che Azurahanim Che Abdullah, Siti Huzaimah Ribut, Mohd Zamani Zulkifli, Mohd Adzir Mahdi. Chin. Phys. B, 2019, 28(8): 084207.
[10] Degradation of current-voltage and low frequency noise characteristics under negative bias illumination stress in InZnO thin film transistors
Li Wang(王黎), Yuan Liu(刘远), Kui-Wei Geng(耿魁伟), Ya-Yi Chen(陈雅怡), Yun-Fei En(恩云飞). Chin. Phys. B, 2018, 27(6): 068504.
[11] Recent progress of the native defects and p-type doping of zinc oxide
Kun Tang(汤琨), Shu-Lin Gu(顾书林), Jian-Dong Ye(叶建东), Shun-Ming Zhu(朱顺明), Rong Zhang(张荣), You-Dou Zheng(郑有炓). Chin. Phys. B, 2017, 26(4): 047702.
[12] Large scale and controllable preparation of W2C nanorods or WC nanodots with peroxidase-like catalytic activity
Xiao-Na Ren(任晓娜), Min Xia(夏敏), Qing-Zhi Yan(燕青芝), Chang-Chun Ge(葛昌纯). Chin. Phys. B, 2017, 26(4): 048103.
[13] Review of flexible and transparent thin-film transistors based on zinc oxide and related materials
Yong-Hui Zhang(张永晖), Zeng-Xia Mei(梅增霞), Hui-Li Liang(梁会力), Xiao-Long Du(杜小龙). Chin. Phys. B, 2017, 26(4): 047307.
[14] Room temperature NO2-sensing properties of hexagonal tungsten oxide nanorods
Yaqiao Wu(武雅乔), Ming Hu(胡明), Yuming Tian(田玉明). Chin. Phys. B, 2017, 26(2): 020701.
[15] Positive gate bias stress-induced hump-effect in elevated-metal metal-oxide thin film transistors
Dong-Yu Qi(齐栋宇), Dong-Li Zhang(张冬利), Ming-Xiang Wang(王明湘). Chin. Phys. B, 2017, 26(12): 128101.
No Suggested Reading articles found!