Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(2): 020701    DOI: 10.1088/1674-1056/26/2/020701
GENERAL Prev   Next  

Room temperature NO2-sensing properties of hexagonal tungsten oxide nanorods

Yaqiao Wu(武雅乔)1,2, Ming Hu(胡明)1, Yuming Tian(田玉明)2
1 School of Electronics and Information Engineering, Tianjin University, Tianjin 300072, China;
2 Taiyuan University of Science and Technology, Taiyuan 030024, China
Abstract  Hexagonal WO3 nanorods were synthesized through a facile hydrothermal method. The nanorods properties were investigated by scanning electron microscope (SEM), transmission electron microscope (TEM), energy dispersive spectroscopy (EDS), and x-ray diffraction (XRD). The NO2-sensing performances in terms of sensor response, response/recovery times and repeatability at room temperature were optimized by varying the heat treatment temperature of WO3 nanorods. The optimized NO2 sensor (400-℃-annealed WO3 nanorods) showed an ultra-high sensor response of 3.2 and short response time of 1 s to 5-ppm NO2. In addition, the 400-℃-annealed sample exhibited more stable repeatability. Furthermore, dynamic responses measurements of annealed samples showed that all the annealed WO3 nanorods sensors presented p-type behaviors. We suppose the p-type behavior of the WO3 nanorods sensor to be that an inversion layer is formed in the space charge layer when the sensor is exposed to NO2 at room temperature.Therefore, the 400-℃-annealed WO3 nanorods sensor is one of the most energy conservation candidates to detect NO2 at room temperature.
Keywords:  WO3 nanorods      thermal treatment      NO2 gas sensor      room temperature  
Received:  30 August 2016      Revised:  21 October 2016      Accepted manuscript online: 
PACS:  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
  78.67.Qa (Nanorods)  
  61.46.Df (Structure of nanocrystals and nanoparticles ("colloidal" quantum dots but not gate-isolated embedded quantum dots))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60771019, 61271070, and 61274074) and the Tianjin Key Research Program of Application Foundation and Advanced Technology, China (Grant No. 11JCZDJC15300).
Corresponding Authors:  Ming Hu     E-mail:  huming@tju.edu.cn

Cite this article: 

Yaqiao Wu(武雅乔), Ming Hu(胡明), Yuming Tian(田玉明) Room temperature NO2-sensing properties of hexagonal tungsten oxide nanorods 2017 Chin. Phys. B 26 020701

[1] Afzal A, Cioffi N, Sabbatini L and Torsi L 2012 Sens. Actuators B 171 25
[2] Heidari E K, Zamani C, Marzbanrad E, Raissi B and Nazarpour S 2010 Sens. Actuators B 146 165
[3] Lee Y L, Tsai W C, Chang C H and Yang Y M 2001 Appl. Surf. Sci. 172 191
[4] Lee J H, Kim J, Seo H W, Song J W, Lee E S, Won M and Han C S 2008 Sens. Actuators B 129 628
[5] Kim B G, Lim D G, Park J H, Choi Y J and Park J G 2011 Appl. Surf. Sci. 257 4715
[6] Karthigeyan A, Gupta R P, Scharnagl K, Burgmair M, Zimmer M, Sharma S K and Eisele I 2001 Sens. Actuators B 78 69
[7] Kunimoto A, Abe N, Uchida H and Katsube T 2000 Sens. Actuators B 65 122
[8] Tamaki J, Hashishin T, Uno Y, Dao D V and Sugiyama S 2008 Sens. Actuators B 132 234
[9] Kim Y S 2009 Sens. Actuators B 137 297
[10] Bai S, Zhang K, Luo R, Li D, Chen A and Liu C C 2012 J. Mater. Chem. 22 12643
[11] Kim S J, Hwang I S, Choi J K and Lee J H 2011 Thin Solid Films 519 2020
[12] Zhang C, Debliquy M, Boudiba A, Liao H and Coddet C 2010 Sens. Actuators B 144 280
[13] Meng D, Yamazaki T, Shen Y, Liu Z and Kikut T 2009 Appl. Surf. Sci. 256 1050
[14] Sun S, Chang X and Li Z 2010 Mater. Res. Bull. 45 1075
[15] Malag'u C, Guidi V, Carotta M C and Martinelli G 2004 Appl. Phys. Lett. 84 4158
[16] Malag'u C, Carotta M C, Gherardi S, Guidi V, Vendemiati B and Martinelli G 2005 Sens. Actuators B 108 70
[17] Qin Y, Shen W, Li X and Hu M 2011 Sens. Actuators B 155 646
[18] Liu Z F, Yamazaki T, Shen Y B, Kikuta T and Nakatani N 2007 Sens. Actuators B 128 173
[19] Moseley P T 1997 Meas. Sci. Technol. 8 223
[20] Williams D E 1999 Sens. Actuators B 57 1
[21] Ahmad M Z, Sadek A Z, Ou J Z, Yaacob M H, Latham K and Wlodarski W 2013 Mater. Chem. Phys. 141 912
[22] Chen D, Yin L, Ge L, Fan B, Zhang R, Sun J and Sha G 2013 Sens. Actuators B 185 445
[23] Ahmad M Z, Wisitsoraat A, Zoolfakar A S, Kadir R A and Wlodarski W 2013 Sens. Actuators B 183 364
[24] Liu Z, Miyauchi M, Yamazaki T and Shen Y 2009 Sens. Actuators B 140 514
[25] You L, Sun Y F, Ma J, Guan Y, Sun J M, Du Y and Lu G Y 2011 Sens. Actuators B 157 401
[26] Qin Y, Hu M and Zhang J 2010 Sens. Actuators B 150 339
[27] Li Y H, Zhao Y M, Ma R Z, Zhu Y Q, Fisher N, Jin Y Z and Zhang X P 2006 J. Phys. Chem. B 110 18191
[28] Pfeifer J, Badaljan E, TekulaBuxbaum P, Kovacs T, Geszti O and Toth A L 1996 J. Cryst. Growth 169 727
[29] Wu Y, Hu M and Wei X 2014 Chin. Phys. B 23 040704
[30] Cacucci A, Potin V, Imhoff L, Marco de Lucas M C and Martin N 2012 Thin Solid Films 520 4778
[31] Tong P V, Hoa N D, Quang V V, Duy N V and Hieu N V 2013 Sens. Actuators B 183 372
[1] High-sensitive terahertz detection by parametric up-conversion using nanosecond pulsed laser
Yuye Wang(王与烨), Gang Nie(聂港), Changhao Hu(胡常灏), Kai Chen(陈锴), Chao Yan(闫超), Bin Wu(吴斌), Junfeng Zhu(朱军峰), Degang Xu(徐德刚), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(2): 024204.
[2] In-situ fabrication of ZnO nanoparticles sensors based on gas-sensing electrode for ppb-level H2S detection at room temperature
Jing-Yue Xuan(宣景悦), Guo-Dong Zhao(赵国栋), Xiao-Bo Shi(史小波), Wei Geng(耿伟), Heng-Zheng Li(李恒征), Mei-Ling Sun(孙美玲), Fu-Chao Jia(贾福超), Shu-Gang Tan(谭树刚), Guang-Chao Yin(尹广超), and Bo Liu(刘波). Chin. Phys. B, 2021, 30(2): 020701.
[3] Effects of water on the structure and transport properties of room temperature ionic liquids and concentrated electrolyte solutions
Jinbing Zhang(张晋兵), Qiang Wang(王强), Zexian Cao(曹则贤). Chin. Phys. B, 2020, 29(8): 087804.
[4] Room temperature non-balanced electric bridge ethanol gas sensor based on a single ZnO microwire
Yun-Zheng Li(李昀铮), Qiu-Ju Feng(冯秋菊), Bo Shi(石博), Chong Gao(高冲), De-Yu Wang(王德煜), Hong-Wei Liang(梁红伟). Chin. Phys. B, 2020, 29(1): 018102.
[5] Room-temperature strong coupling between dipolar plasmon resonance in single gold nanorod and two-dimensional excitons in monolayer WSe2
Jinxiu Wen(温锦秀), Hao Wang(汪浩), Huanjun Chen(陈焕君), Shaozhi Deng(邓少芝), Ningsheng Xu(许宁生). Chin. Phys. B, 2018, 27(9): 096101.
[6] Room-temperature operating extended short wavelength infrared photodetector based on interband transition of InAsSb/GaSb quantum well
Ling Sun(孙令), Lu Wang(王禄), Jin-Lei Lu(鲁金蕾), Jie Liu(刘洁), Jun Fang(方俊), Li-Li Xie(谢莉莉), Zhi-Biao Hao(郝智彪), Hai-Qiang Jia(贾海强), Wen-Xin Wang(王文新), Hong Chen(陈弘). Chin. Phys. B, 2018, 27(4): 047209.
[7] Room temperature ferromagnetism in un-doped amorphous HfO2 nano-helix arrays
Xie Qian (谢谦), Wang Wei-Peng (王炜鹏), Xie Zheng (谢拯), Zhan Peng (战鹏), Li Zheng-Cao (李正操), Zhang Zheng-Jun (张政军). Chin. Phys. B, 2015, 24(5): 057503.
[8] Dielectric and magnetic properties of (Zn, Co) co-doped SnO2 nanoparticles
Rajwali Khan, Fang Ming-Hu (方明虎). Chin. Phys. B, 2015, 24(12): 127803.
[9] A study of transition from n-to p-type based on hexagonal WO3 nanorods sensor
Wu Ya-Qiao (武雅乔), Hu Ming (胡明), Wei Xiao-Ying (韦晓莹). Chin. Phys. B, 2014, 23(4): 040704.
[10] Luminescence properties of ZnS:Cu, Eu semiconductor nanocrystals synthesized by a hydrothermal process
Xin Mei (新梅), Hu Li-Zhong (胡礼中). Chin. Phys. B, 2013, 22(8): 087804.
[11] The effect of Si content on the martensitic transfor-mation temperature of Ni55.5e18Ga26.5–xSix alloys
Shen Hua-Hai(申华海), Yu Hua-Jun(余华军), Fu Hao(付浩), Guo Yuan-Jun(郭袁俊), Fu Yong-Qing(傅永庆), and Zu Xiao-Tao(祖小涛) . Chin. Phys. B, 2011, 20(4): 046102.
[12] Si nanopillar arrays with nanocrystals produced by template-induced growth at room temperature
Bai An-Qi(白安琪), Zheng Jun(郑军), Tao Ye-Liao(陶冶了), Zuo Yu-Hua(左玉华), Xue Chun-Lai(薛春来), Cheng Bu-Wen(成步文), and Wang Qi-Ming(王启明) . Chin. Phys. B, 2011, 20(11): 116103.
[13] 1-W, high-repetition-rate room temperature operation of mid-infrared optical parametric oscillator based on periodically poled MgO-doped LiNbO
Zhang Tie-Li(张铁犁), Zhang Bai-Gang(张百钢), Xu De-Gang(徐德刚), Wang Peng(王鹏), Ji Feng(纪峰), and Yao Jian-Quan(姚建铨) . Chin. Phys. B, 2008, 17(2): 633-636.
[14] Large magnetic entropy change near room temperature in the LaFe11.5Si1.5H1.3 interstitial compound
Chen Yuan-Fu (陈远富), Wang Fang (王芳), Shen Bao-Gen (沈保根), Hu Feng-Xia (胡凤霞), Cheng Zhao-Hua (成昭华), Wang Guang-Jun (王光军), Sun Ji-Rong (孙继荣). Chin. Phys. B, 2002, 11(7): 741-744.
No Suggested Reading articles found!