Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(5): 057301    DOI: 10.1088/1674-1056/ac48fb
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Improved device performance of recessed-gate AlGaN/GaN HEMTs by using in-situ N2O radical treatment

Xinchuang Zhang(张新创)1, Mei Wu(武玫)2, Bin Hou(侯斌)2, Xuerui Niu(牛雪锐)2, Hao Lu(芦浩)2, Fuchun Jia(贾富春)2, Meng Zhang(张濛)2, Jiale Du(杜佳乐)2, Ling Yang(杨凌)2, Xiaohua Ma(马晓华)2,†, and Yue Hao(郝跃)2
1 School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710071, China;
2 School of Microelectronics, Xidian University, Xi'an 710071, China
Abstract  The N2O radicals in-situ treatment on gate region has been employed to improve device performance of recessed-gate AlGaN/GaN high-electron-mobility transistors (HEMTs). The samples after gate recess etching were treated by N2O radicals without physical bombardment. After in-situ treatment (IST) processing, the gate leakage currents decreased by more than one order of magnitude compared to the sample without IST. The fabricated HEMTs with the IST process show a low reverse gate current of 10-9 A/mm, high on/off current ratio of 108, and high fT×Lg of 13.44 GHz· μm. A transmission electron microscope (TEM) imaging illustrates an oxide layer with a thickness of 1.8 nm exists at the AlGaN surface. X-ray photoelectron spectroscopy (XPS) measurement shows that the content of the Al-O and Ga-O bonds elevated after IST, indicating that the Al-N and Ga-N bonds on the AlGaN surface were broken and meanwhile the Al-O and Ga-O bonds formed. The oxide formed by a chemical reaction between radicals and the surface of the AlGaN barrier layer is responsible for improved device characteristics.
Keywords:  AlGaN/GaN      high-electron-mobility transistors      low gate leakage      radio frequency      radical treatment  
Received:  31 August 2021      Revised:  07 November 2021      Accepted manuscript online: 
PACS:  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  81.05.Ea (III-V semiconductors)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.30.Tv (Field effect devices)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No.2018YFB1802100),the National Natural Science Foundation of China (Grant Nos.62104184,62090014,62104178,and 62104179),the Fundamental Research Funds for the Central Universities of China (Grant Nos.XJS201102,XJS211101,XJS211106,and ZDRC2002),and the Natural Science Foundation of Shaanxi Province,China (Grant Nos.2020JM-191 and 2018HJCG-20).
Corresponding Authors:  Xiaohua Ma,E-mail:xhma@xidian.edu.cn     E-mail:  xhma@xidian.edu.cn
About author:  2022-1-7

Cite this article: 

Xinchuang Zhang(张新创), Mei Wu(武玫), Bin Hou(侯斌), Xuerui Niu(牛雪锐), Hao Lu(芦浩), Fuchun Jia(贾富春), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃) Improved device performance of recessed-gate AlGaN/GaN HEMTs by using in-situ N2O radical treatment 2022 Chin. Phys. B 31 057301

[1] Chung J W, Hoke W E, Chumbes E M and Palacios T 2010 IEEE Electron Dev. Lett. 31 195
[2] Karmalkar S and Mishra U K 2001 IEEE Trans. Electron Dev. 48 1515
[3] Wu Y F, Saxler A, Moore M, Smith R P, Sheppard S, Chavarkar P M, Wisleder T, Mishra U K and Parikh P 2004 IEEE Electron Dev. Lett. 25 117
[4] Akasaki I, Amano H, Kito M and Hiramatsu K 1991 J. Lumin. 48 666
[5] Ambacher O 1998 J. Phys. D: Appl. Phys. 31 2653
[6] Cao X A, Pearton S J, Dang G T, Zhang A P, Ren F and Van Hove J M 2000 IEEE Trans. Electron Dev. 47 1320
[7] Minami M, Tomiya S, Ishikawa K, Matsumoto R, Shang C, Fukasawa M, Uesawa F, Sekine M, Hori M and Tatsumi T 2011 Jpn. J. Appl. Phys. 50 08JE03
[8] Choi K J, Jang H W and Lee J L 2002 Appl. Phys. Lett. 82 1233
[9] Wang X, Yu G, Lei B, Wang X, Lin C, Sui Y, Meng S, Qi M and Li A 2007 J. Electron. Mater. 36 697
[10] Tajima M, Kotani J and Hashizume T 2009 Jpn J. Appl. Phys. 48 020203
[11] Kim H, Schuette M L and Lu W 2011 J. Vac. Sci. Technol. B 29 031204
[12] Basu A, Kumar V and Adesida I 2007 J. Vac. Sci. Technol. B 25 2607
[13] Kim K W, Jung S D, Kim D S, Kang H S, Im K S, Oh J J, Ha J B, Shin J K and Lee J H 2011 IEEE Electron Dev. Lett. 32 1376
[14] Zhu J, Jing S, Ma X, Liu S, Wang P, Zhang Y, Zhu Q, Mi M, Hou B, Yang L, Kuball M and Hao Y 2020 IEEE Trans. Electron Dev. 67 3541
[15] Mi MH, Zhang K, Zhao S L, Wang C, Zhang J C, Ma X H and Hao Y 2015 Chin. Phys. B 24 027303
[16] Chiu H C, Yang C W, Chen C H, Fu J S and Chien F T 2011 Appl. Phys. Lett. 99 153508
[17] Li M, Wang J, Wang H, Cao Q, Li J and Huang C 2019 Solid-State Electron. 156 58
[18] Cui P, Zhang J, Yang T Y, Chen H, Zhao H C, Lin G, Wei L, John Q Xiao, Chueh Y and Zeng Y 2020 J. Phys. D: Appl. Phys 53 065103
[19] Liu L, Xi Y, Ahh S, Ren F, Gila B P, Pearton S J and Kravchenko I I 2014 J. Vac. Sci. Technol. B 32 052201
[20] Oehrlein G S and Hamaguchi S 2018 Plasma Sources Sci. Technol. 27 023001
[21] Ibbetson J P, Fini P T, Ness K D, DenBaars S P, Speck J S and Mishra U K 2000 Appl. Phys. Lett. 77 250
[22] Colinge C J P and Colinge A 2002 Physics of Semiconductor Devices (Springer, Boston, MA: Kluwer Academic Publishers) pp. 145-146
[23] Miller E J, Dang X Z and Yu E T 2000 J. Appl. Phys. 88 5951
[24] Chung J W, Roberts J C, Piner E L and Palacios T 2008 IEEE Electron Dev. Lett. 29 1196
[25] Wang X, Huang S, Zheng Y, Wei K, Chen X, Zhang H and Liu X 2014 IEEE Trans. Electron Dev. 61 1341
[26] Binari S C, Ikossi K, Roussos J A, Kruppa W, Park D, Dietrich H B, Koleske D D, Wickenden A E and Henry R L 2001 IEEE Trans. Electron Dev. 48 465
[27] Lewandkow R, Grodzicki M, Mazur P and Ciszewski A 2020 Vacuum 177 109345
[28] Okubo S, Horikawa K, Kawarada H and Hiraiwa A 2019 J. Appl. Phys. 126 045704
[29] Lin Z, Lu W, Lee J, Liu D, Flynn J S and Brande G R 2003 Appl. Phys. Lett. 82 4364
[30] Zhang Y, Huang S, Wei K, Zhang S, Wang X, Zheng Y, Liu G, Chen X Li Y and Liu G 2020 IEEE Electron Dev. Lett. 41 701
[31] Wang R H, Li G W, Laboutin O, Cao Y, Johnson W, Snider G, Fay P, Jena D and Xing H L 2011 IEEE Electron Dev. Lett. 32 892
[1] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[2] Ignition dynamics of radio frequency discharge in atmospheric pressure cascade glow discharge
Ya-Rong Zhang(张亚容), Qian-Han Han(韩乾翰), Jun-Lin Fang(方骏林), Ying Guo(郭颖), and Jian-Jun Shi(石建军). Chin. Phys. B, 2023, 32(2): 025201.
[3] New designed helical resonator to improve measurement accuracy of magic radio frequency
Tian Guo(郭天), Peiliang Liu(刘培亮), and Chaohong Lee(李朝红). Chin. Phys. B, 2022, 31(9): 093201.
[4] Simulation design of normally-off AlGaN/GaN high-electron-mobility transistors with p-GaN Schottky hybrid gate
Yun-Long He(何云龙), Fang Zhang(张方), Kai Liu(刘凯), Yue-Hua Hong(洪悦华), Xue-Feng Zheng(郑雪峰),Chong Wang(王冲), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068501.
[5] Current oscillation in GaN-HEMTs with p-GaN islands buried layer for terahertz applications
Wen-Lu Yang(杨文璐), Lin-An Yang(杨林安), Fei-Xiang Shen(申飞翔), Hao Zou(邹浩), Yang Li(李杨), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 058505.
[6] High power-added-efficiency AlGaN/GaN HEMTs fabricated by atomic level controlled etching
Xinchuang Zhang(张新创), Bin Hou(侯斌), Fuchun Jia(贾富春), Hao Lu(芦浩), Xuerui Niu(牛雪锐), Mei Wu(武玫), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027301.
[7] High linearity AlGaN/GaN HEMT with double-Vth coupling for millimeter-wave applications
Pengfei Wang(王鹏飞), Minhan Mi(宓珉瀚), Meng Zhang(张濛), Jiejie Zhu(祝杰杰), Yuwei Zhou(周雨威), Jielong Liu(刘捷龙), Sijia Liu(刘思佳), Ling Yang(杨凌), Bin Hou(侯斌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027103.
[8] Normally-off AlGaN/GaN heterojunction field-effect transistors with in-situ AlN gate insulator
Taofei Pu(蒲涛飞), Shuqiang Liu(刘树强), Xiaobo Li(李小波), Ting-Ting Wang(王婷婷), Jiyao Du(都继瑶), Liuan Li(李柳暗), Liang He(何亮), Xinke Liu(刘新科), and Jin-Ping Ao(敖金平). Chin. Phys. B, 2022, 31(12): 127701.
[9] Fluorine-plasma treated AlGaN/GaN high electronic mobility transistors under off-state overdrive stress
Dongyan Zhao(赵东艳), Yubo Wang(王于波), Yanning Chen(陈燕宁), Jin Shao(邵瑾), Zhen Fu(付振), Fang Liu(刘芳), Yanrong Cao(曹艳荣), Faqiang Zhao(赵法强), Mingchen Zhong(钟明琛), Yasong Zhang(张亚松), Maodan Ma(马毛旦), Hanghang Lv(吕航航), Zhiheng Wang(王志恒), Ling Lv(吕玲), Xuefeng Zheng(郑雪峰), and Xiaohua Ma(马晓华). Chin. Phys. B, 2022, 31(11): 117301.
[10] A novel Si-rich SiN bilayer passivation with thin-barrier AlGaN/GaN HEMTs for high performance millimeter-wave applications
Zhihong Chen(陈治宏), Minhan Mi(宓珉瀚), Jielong Liu(刘捷龙), Pengfei Wang(王鹏飞), Yuwei Zhou(周雨威), Meng Zhang(张濛), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(11): 117105.
[11] Development of ZnTe film with high copper doping efficiency for solar cells
Xin-Lu Lin(林新璐), Wen-Xiong Zhao(赵文雄), Qiu-Chen Wu(吴秋晨), Yu-Feng Zhang(张玉峰), Hasitha Mahabaduge, and Xiang-Xin Liu(刘向鑫). Chin. Phys. B, 2022, 31(10): 108802.
[12] High-frequency enhancement-mode millimeterwave AlGaN/GaN HEMT with an fT/fmax over 100 GHz/200 GHz
Sheng Wu(武盛), Minhan Mi(宓珉瀚), Xiaohua Ma(马晓华), Ling Yang(杨凌), Bin Hou(侯斌), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(8): 087102.
[13] Ferroelectric effect and equivalent polarization charge model of PbZr0.2Ti0.8O3 on AlGaN/GaN MIS-HEMT
Yao-Peng Zhao(赵垚澎), Chong Wang(王冲), Xue-Feng Zheng(郑雪峰), Xiao-Hua Ma(马晓华), Ang Li(李昂), Kai Liu(刘凯), Yun-Long He(何云龙), Xiao-Li Lu(陆小力) and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(5): 057302.
[14] Analysis on degradation mechanisms of normally-off p-GaN gate AlGaN/GaN high-electron mobility transistor
Si-De Song(宋思德), Su-Zhen Wu(吴素贞), Guo-Zhu Liu(刘国柱), Wei Zhao(赵伟), Yin-Quan Wang(王印权), Jian-Wei Wu(吴建伟), and Qi He(贺琪). Chin. Phys. B, 2021, 30(4): 047103.
[15] Effects of notch structures on DC and RF performances of AlGaN/GaN high electron mobility transistors
Hao Zou(邹浩), Lin-An Yang(杨林安), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(4): 040502.
No Suggested Reading articles found!