Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(2): 023103    DOI: 10.1088/1674-1056/ae311a
DATA PAPER Prev  

High-Z benchmarking: Probing the sub-eV frontier and an extensive Li-like uranium atomic dataset

Shuang Li(李双)†, Yan Wang(王燕), Xue-Lian Chong(崇雪莲), Yan-Ran Luo(罗嫣然), and Fan Zhang(张凡)
School of Electrical and Optoelectronic Engineering, West Anhui University, Luan 237012, China
Abstract  Recent theoretical investigations into the excitation energies of the high-$Z$ lithium isoelectronic sequence (Li-like) ions have revealed significant discrepancies [Eur. Phys. J. Plus 137 1253 (2022)], with deviations between the methods employed reaching up to $\sim$ 40 eV for U$^{89+}$. In this work, we address this issue through a comprehensive study of Li-like uranium (U$^{89+}$), calculating the lowest 35 levels of the $\rm 1s^{2}$$nl$ ($n \leq 6$) configurations. We employ two independent relativistic methods: the multiconfiguration Dirac-Hartree-Fock (MCDHF) method implemented in the GRASP2K code, and the relativistic configuration interaction (RCI) method within the Flexible Atomic Code (FAC). Our calculations resolve the discrepancies, achieving excellent mutual agreement and reducing deviations from experimental benchmarks to within $\sim2$ eV. Furthermore, we identify the bottlenecks to achieving sub-eV accuracy for each method in the strong-field, high-$Z$ regime. To the best of our knowledge, this is the most extensive dataset for this ion to date, including excitation energies, lifetimes, and radiative properties for allowed (E1) and forbidden (M1, E2, M2) transitions. Estimated uncertainties for most strong allowed and forbidden transitions remain below 1 % and 2 %, respectively, rendering this dataset valuable for applications in plasma spectroscopy. The dataset that supported the findings of this study is available in Science Data Bank at https://doi.org/10.57760/sciencedb.32492.
Keywords:  multiconfiguration Dirac-Hartree-Fock      relativistic configuration interaction      quantum electrodynamics  
Received:  21 October 2025      Revised:  19 December 2025      Accepted manuscript online:  25 December 2025
PACS:  31.15.ag (Excitation energies and lifetimes; oscillator strengths)  
  31.15.am (Relativistic configuration interaction (CI) and many-body perturbation calculations)  
  31.15.xr (Self-consistent-field methods)  
  32.70.Cs (Oscillator strengths, lifetimes, transition moments)  
Fund: Project supported by the Research Foundation for Higher Level Talents of West Anhui University (Grant No. WGKQ2021005) and the Research Projects of West Anhui University (Grant No. WXZR202418). The author (S. L.) acknowledges the support from the Visiting Researcher Programs at Fudan University (C. Y. Chen’s research group) and the Institute of Applied Physics and Computational Mathematics (J. Yan’s research group). The author (S. L.) would also like to express his gratitude to Ai-JiaWang, Chen-Jie Xi, Xiang Gao, and Ying-Hong Shi for many valuable discussions during this research.
Corresponding Authors:  Shuang Li     E-mail:  shuangli09@fudan.edu.cn

Cite this article: 

Shuang Li(李双), Yan Wang(王燕), Xue-Lian Chong(崇雪莲), Yan-Ran Luo(罗嫣然), and Fan Zhang(张凡) High-Z benchmarking: Probing the sub-eV frontier and an extensive Li-like uranium atomic dataset 2026 Chin. Phys. B 35 023103

[1] Barnes J, Zhu Y L, Lund K A, Sprouse T M, Vassh N, McLaughlin G C, Mumpower M R and Surman R 2021 Astrophys. J. 918 44
[2] Loetzsch R, Beyer H F, Duval L, et al. 2024 Nature 625 673
[3] Smits O R, Indelicato P, NazarewiczW, PiibelehtMand Schwerdtfeger P 2023 Phys. Rep. 1035 1
[4] King S A, Spiess L J and Micke P, et al. 2022 Nature 611 43
[5] Li S, Zhao M, Liu G Q, Hu C B and Pan G Z 2023 Chin. Phys. B 32 103101
[6] Li S, Zhou J, Zhu L H, Mei X F and Yan J 2024 Chin. Phys. B 33 103102
[7] Rodrigues G C, Ourdane M A, Bieroń J, Indelicato P and Lindroth E 2000 Phys. Rev. A 63 012510
[8] Shabaev V M, Tupitsyn I I, KaygorodovMY, Kozhedub Y S, Malyshev A V and Mironova D V 2020 Phys. Rev. A 101 052502
[9] Li M C, Si R, Brage T, Hutton R and Zou Y M 2018 Phys. Rev. A 98 020502
[10] Si R, Guo X L, Brage T, Chen C Y, Hutton R and Fischer C F 2018 Phys. Rev. A 98 012504
[11] Li S 2024 arXiv:2412.10613 [physics.atom-ph]
[12] Yerokhin V A and Surzhykov A 2018 J. Phys. Chem. Ref. Data 47 023105
[13] Fischer C F, Gaigalas G, Jönsson P and Bieroń J 2019 Comput. Phys. Commun. 237 184
[14] Jönsson P, Gaigalas G, Fischer C F, et al. 2023 Atoms 11 68
[15] Gu M F 2008 Can. J. Phys. 86 675
[16] Kumar P, Goyal A and Mohan M 2022 Eur. Phys. J. Plus 137 1253
[17] Grant I P, McKenzie B J, Norrington P H, Mayers D F and Pyper N C 1980 Comput. Phys. Commun. 21 207
[18] Parpia F A, Fischer C F and Grant I P 1996 Comput. Phys. Commun. 94 249
[19] Jönsson P, He X, Fischer C F and Grant I P 2007 Comput. Phys. Commun. 177 597
[20] Beiersdorfer P, Chen H, Thorn D B and Träbert E 2005 Phys. Rev. Lett. 95 233003
[21] Beiersdorfer P, Elliott S R, Osterheld A, Stöhlker T, Autrey J, Brown G V, Smith A J and Widmann K 1996 Phys. Rev. A 53 4000
[22] Desclaux J P 1975 Comput. Phys. Commun. 9 31
[23] Jönsson P, Gaigalas G, Bieroń J, Fischer C F and Grant I P 2013 Comput. Phys. Commun. 184 2197
[24] Bilous P, Cheung C and Safronova M 2024 Phys. Rev. A 110 042818
[25] Bilous P, Palffy A and Marquardt F 2023 Phys. Rev. Lett. 131 133002
[26] Ma K C, Yang C, Zhang J Y, Li Y F, Jiang G and Chai J J 2024 Entropy 26 962
[27] Chen Z B 2024 J. Quant. Spectrosc. Radiat. Transf. 324 109078
[28] Fischer C F, Godefroid M, Brage T, Jönsson P and Gaigalas G 2016 J. Phys. B: At. Mol. Opt. Phys. 49 182004
[29] Jönsson P, Godefroid M, Gaigalas G, et al. 2022 Atoms 11 7
[30] Wang K, Si R, Dang W, et al. 2016 Astrophys. J. Suppl. Ser. 223 3
[31] Wang K, Jönsson P, Ekman J, Gaigalas G, Godefroid M R, Si R, Chen Z B, Li S, Chen C Y and Yan J 2017 Astrophys. J. Suppl. Ser. 229 37
[32] Si R, Li S, Guo X L, Chen Z B, Brage T, Jönsson P, Wang K, Yan J, Chen C Y and Zou Y M 2016 Astrophys. J. Suppl. Ser. 227 16
[33] Wang K, Chen Z B, Si R, et al. 2016 Astrophys. J. Suppl. Ser. 226 14
[34] Dyall K G 1986 Aust. J. Phys. 39 667
[35] Schweppe J, Belkacem A, Blumenfeld L, et al. 1991 Phys. Rev. Lett. 66 1434
[36] Beiersdorfer P, Knapp D, Marrs R E, Elliott S R and Chen M H 1993 Phys. Rev. Lett. 71 3939
[37] Slater J C 1951 Phys. Rev. 81 385
[38] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[39] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[40] Krieger J B, Li Y and Iafrate G J 1992 Phys. Rev. A 46 5453
[41] Vydrov O A and Scuseria G E 2006 J. Chem. Phys. 125 234109
[42] Talman J D and Shadwick W F 1976 Phys. Rev. A 14 36
[43] Kozhedub Y S, Volotka A V, Artemyev A N, Glazov D A, Plunien G, Shabaev V M, Tupitsyn I I and Stöhlker T 2010 Phys. Rev. A 81 042513
[44] Sapirstein J and Cheng K T 2011 Phys. Rev. A 83 012504
[45] Blundell S A 1993 Phys. Rev. A 47 1790
[46] Johnson W R, Liu Z W and Sapirstein J 1996 At. Data Nucl. Data Tables 64 279
[47] Fischer C F 2009 Phys. Scr. T134 014019
[48] Ekman J, Godefroid M R and Hartman H 2014 Atoms 2 215
[49] Zhang H L, Sampson D H and Fontes C J 1990 At. Data Nucl. Data Tables 44 31
[50] Cheng K T, Kim Y K and Desclaux J P 1979 At. Data Nucl. Data Tables 24 111
[51] Kozhedub Y S, Andreev O V, Shabaev V M, Tupitsyn I I, Brandau C, Kozhuharov C, Plunien G and Stöhlker T 2008 Phys. Rev. A 77 032501
[52] Malyshev A V, Kozhedub Y S and Shabaev VM2023 Phys. Rev. A 107 042806
[1] Enhancing the performance of quantum battery by squeezing reservoir engineering
Yue Li(李月), Rong-Fang Liu(刘蓉芳), Jia-Bin You(游佳斌), Wan-Li Yang(杨万里), and Hua Guan(管桦). Chin. Phys. B, 2026, 35(1): 010303.
[2] Preparation of entangled W states based on the cavity QED system
Ke Li(李可) and Jun-Long Zhao(赵军龙). Chin. Phys. B, 2024, 33(9): 090306.
[3] Coupling and characterization of a Si/SiGe triple quantum dot array with a microwave resonator
Shun-Li Jiang(江顺利), Tian-Yi Jiang(蒋天翼), Yong-Qiang Xu(徐永强), Rui Wu(吴睿), Tian-Yue Hao(郝天岳), Shu-Kun Ye(叶澍坤), Ran-Ran Cai(蔡冉冉), Bao-Chuan Wang(王保传), Hai-Ou Li(李海欧), Gang Cao(曹刚), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2024, 33(9): 090311.
[4] Remote entangling gate between a quantum dot spin and a transmon qubit mediated by microwave photons
Xing-Yu Zhu(朱行宇), Le-Tian Zhu(朱乐天), Tao Tu(涂涛), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2024, 33(2): 020315.
[5] Circuit quantum electrodynamics with a quadruple quantum dot
Ting Lin(林霆), Hai-Ou Li(李海欧), Gang Cao(曹刚), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2023, 32(7): 070307.
[6] Magic wavelengths for 6s1/2 → 5d3/2,5/2 transitions of Yb+ ions
Ting Chen(陈婷), Lei Wu(吴磊), Ru-Kui Zhang(张儒奎), Yong-Bo Tang(唐永波), Jun Jiang(蒋军), and Chen-Zhong Dong(董晨钟). Chin. Phys. B, 2023, 32(5): 053206.
[7] Realization of the iSWAP-like gate among the superconducting qutrits
Peng Xu(许鹏), Ran Zhang(张然), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(2): 020306.
[8] Preparation of squeezed light with low average photon number based on dynamic Casimir effect
Na Li(李娜), Zi-Jian Lin(林资鉴), Mei-Song Wei(韦梅松), Ming-Jie Liao(廖明杰),Jing-Ping Xu(许静平), San-Huang Ke(柯三黄), and Ya-Ping Yang(羊亚平). Chin. Phys. B, 2023, 32(12): 120301.
[9] Atomic structure and collision dynamics with highly charged ions
Xinwen Ma(马新文), Shaofeng Zhang(张少锋), Weiqiang Wen(汶伟强), Zhongkui Huang(黄忠魁), Zhimin Hu(胡智民), Dalong Guo(郭大龙), Junwen Gao(高俊文), Bennaceur Najjari, Shenyue Xu(许慎跃), Shuncheng Yan(闫顺成), Ke Yao(姚科), Ruitian Zhang(张瑞田), Yong Gao(高永), and Xiaolong Zhu(朱小龙). Chin. Phys. B, 2022, 31(9): 093401.
[10] Change-over switch for quantum states transfer with topological channels in a circuit-QED lattice
Liu-Yong Cheng(程留永), Li-Na Zheng(郑黎娜), Ruixiang Wu(吴瑞祥), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(2): 020305.
[11] Quantum storage of single photons with unknown arrival time and pulse shapes
Yu You(由玉), Gong-Wei Lin(林功伟), Ling-Juan Feng(封玲娟), Yue-Ping Niu(钮月萍), and Shang-Qing Gong(龚尚庆). Chin. Phys. B, 2021, 30(8): 084207.
[12] Reversible waveform conversion between microwave and optical fields in a hybrid opto-electromechanical system
Li-Guo Qin(秦立国), Zhong-Yang Wang(王中阳), Jie-Hui Huang(黄接辉), Li-Jun Tian(田立君), and Shang-Qing Gong(龚尚庆). Chin. Phys. B, 2021, 30(6): 068502.
[13] Perfect photon absorption based on the optical parametric process
Yang Zhang(张旸), Yu-Bo Ma(马宇波), Xin-Ping Li(李新平), Yu Guo(郭钰), and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(6): 064203.
[14] Absorption interferometer of two-sided cavity
Miao-Di Guo(郭苗迪) and Hong-Mei Li(李红梅). Chin. Phys. B, 2021, 30(5): 054202.
[15] Fast generation of W state via superadiabatic-based shortcut in circuit quantum electrodynamics
Xue-Mei Wang(王雪梅), An-Qi Zhang(张安琪), Peng Xu(许鹏, and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2021, 30(3): 030307.
No Suggested Reading articles found!