Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(1): 010303    DOI: 10.1088/1674-1056/ae1df2
RAPID COMMUNICATION Prev   Next  

Enhancing the performance of quantum battery by squeezing reservoir engineering

Yue Li(李月)1,2, Rong-Fang Liu(刘蓉芳)1,3, Jia-Bin You(游佳斌)4,5,†, Wan-Li Yang(杨万里)1,‡, and Hua Guan(管桦)1
1 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Key Laboratory of Quantum Theory and Applications of MoE, Lanzhou Center for Theoretical Physics, and Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou 730000, China;
4 Quantum Innovation Centre (Q. InC), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore;
5 Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), Singapore 138632, Republic of Singapore
Abstract  Reservoir engineering has been widely used in various quantum technologies. Based on a cavity-QED (quantum electrodynamics) model, we propose a potentially practical scheme using squeezed-vacuum reservoir engineering to optimize the performance of a quantum battery (QB) located inside a cavity driven by a broadband squeezed laser, which acts as a squeezed-vacuum reservoir. Using the reduced master equation of the QB obtained via the adiabatic elimination method, we focus on the QB’s charging dynamics under tunable squeezed reservoirs governed by parametrically controlled squeezing parameters, which dictate the efficiency of energy transfer and the extractable work (ergotropy) of the QB. We show that increasing the squeezing strength improves the charging rate and enables rapid energy transfer, whereas the steady-state energy of the QB saturates at specific values of the squeezing parameter. Notably, the ergotropy of the QB reaches its maximum at a critical squeezing strength and does not scale monotonically with the squeezing strength. This nonmonotonic behavior underscores the existence of optimal parameter regimes, through which the performance of the QB can be significantly enhanced.
Keywords:  quantum computation      cavity quantum electrodynamics  
Received:  22 October 2025      Revised:  06 November 2025      Accepted manuscript online:  11 November 2025
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
Fund: This project is supported by the National Natural Science Foundation of China (Grants No. 12274422) and the Natural Science Foundation of Hubei Province (Grant No. 2022CFA013). J.-B. Y. acknowledges support from A*STAR (Grant Nos. C230917003 and C230917007) and Q.InC Strategic Research and Translational Thrust.
Corresponding Authors:  Jia-Bin You, Wan-Li Yang     E-mail:  you_jiabin@a-star.edu.sg;ywl@wipm.ac.cn

Cite this article: 

Yue Li(李月), Rong-Fang Liu(刘蓉芳), Jia-Bin You(游佳斌), Wan-Li Yang(杨万里), and Hua Guan(管桦) Enhancing the performance of quantum battery by squeezing reservoir engineering 2026 Chin. Phys. B 35 010303

[1] Alicki R and Fannes M 2013 Phys. Rev. E 87 042123
[2] Ferraro D, Campisi M, Andolina G M, Pellegrini V and Polini M 2018 Phys. Rev. Lett. 120 117702
[3] Pokhrel S and Gea-Banacloche J 2025 Phys. Rev. Lett. 134 130401
[4] Dou F Q, Zhou H and Sun J A 2022 Phys. Rev. A 106 032212
[5] Li Y L, Liao C H and Xiao X 2025 Chin. Phys. B 34 010307
[6] Liu F, Yang H Y, Wang S L, Wang J Z, Zhang K and Wang X H 2025 Chin. Phys. B 34 020306
[7] Yu W L, Zhang Y, Li H, Wei G F, Han L P, Tian F and Zou J 2023 Chin. Phys. B 32 010302
[8] Andolina G M, Keck M, Mari A, Campisi M, Giovannetti V and Polini M 2019 Phys. Rev. Lett. 122 047702
[9] Gyhm J Y, Safr anek D and Rosa D 2022 Phys. Rev. Lett. 128 140501
[10] Rossini D, Andolina G M, Rosa D, Carrega M and Polini M 2020 Phys. Rev. Lett. 125 236402
[11] Song W L, Liu H B, Zhou B, Yang W L and An J H 2024 Phys. Rev. Lett. 132 090401
[12] Song W L, Wang J L, Zhou B, Yang W L and An J H 2025 Phys. Rev. Lett. 135 020405
[13] Farina D, Andolina G M, Mari A, Polini M and Giovannetti V 2019 Phys. Rev. B 99 035421
[14] Julia-Farr e S, Salamon T, Riera A, Bera M N and Lewenstein M 2020 Phys. Rev. Res. 2 023113
[15] Abah O, De Chiara G, Paternostro M and Puebla R 2022 Phys. Rev. Res. 4 L022017
[16] Kamin F H, Tabesh F T, Salimi S and Santos A C 2020 Phys. Rev. E 102 052109
[17] Shi H L, Ding S, Wan Q K, Wang X H and Yang W L 2022 Phys. Rev. Lett. 129 130602
[18] Wang L, Liu S Q, Wu F l, Fan H and Liu S Y 2023 Phys. Rev. A 108 062402
[19] Sen K and Sen U 2021 Phys. Rev. A 104 L030402
[20] Imai S, Guhne O and Nimmrichter S 2023 Phys. Rev. A 107 022215
[21] Centrone F, Mancino L and Paternostro M 2023 Phys. Rev. A 108 052213
[22] Hovhannisyan K V, Perarnau-Llobet M, Huber M and Acín A 2013 Phys. Rev. Lett. 111 240401
[23] Monsel J, Fellous-Asiani M, Huard B and Auffeves A 2020 Phys. Rev. Lett. 124 130601
[24] Santos A C, C akmak B, Campbell S and Zinner N T 2019 Phys. Rev. E 100 032107
[25] Binder F C, Vinjanampathy S, Modi K and Goold J 2015 New J. Phys. 17 075015
[26] Le T P, Levinsen J, Modi K, Parish M M and Pollock F A 2018 Phys. Rev. A 97 022106
[27] Campaioli F, Pollock F A, Binder F C, Celeri L, Goold J, Vinjanampa- thy S and Modi K 2017 Phys. Rev. Lett. 118 150601
[28] Arjmandi M B, Shokri A, Faizi E and Mohammadi H 2022 Phys. Rev. A 106 062609
[29] Crescente A, Carrega M, Sassetti M and Ferraro D 2020 Phys. Rev. B 102 245407
[30] Andolina G M, Keck M, Mari A, Giovannetti V and Polini M 2019 Phys. Rev. B 99 205437
[31] Dou F Q, Lu Y Q, Wang Y J and Sun J A 2022 Phys. Rev. B 105 115405
[32] Skrzypczyk P, Short A J and Popescu S 2014 Nat. Commun. 5 4185
[33] Zhang Y Y, Yang T R, Fu L and Wang X 2019 Phys. Rev. E 99 052106
[34] Chang W, Yang T R, Dong H, Fu L, Wang X and Zhang Y Y 2021 New J. Phys. 23 103026
[35] Quach J Q, McGhee K E, Ganzer L, Rouse D M, Lovett B W, Gauger E M, Keeling J, Cerullo G, Lidzey D G and Virgili T 2022 Sci. Adv. 8 eabk3160
[36] Hu C K, Qiu J, Souza P J P, Yuan J, Zhou Y, Zhang L, Chu J, Pan X, Hu L, Li J, Xu Y, Zhong Y, Liu S, Yan F, Tan D, Bachelard R, Villas-Boas C J, Santos A C and Yu D 2022 Quantum Sci. Technol. 7 045018
[37] Joshi J and Mahesh T S 2022 Phys. Rev. A 106 042601
[38] Gemme G, Grossi M, Ferraro D, Vallecorsa S and Sassetti M 2022 Batteries 8 43
[39] Zheng R H, Ning W, Yang Z B, Xia Y and Zheng S B 2022 New J. Phys. 24 063031
[40] Yu J, Wang S, Liu K, Zha C, Wu Y, Chen F, Ye Y, Li S, Zhu Q, Guo S, Qian H, Huang H L, Zhao Y, Ying C, Fan D, Wu D, Su H, Deng H, Rong H, Zhang K, Cao S, Lin J, Xu Y, Guo C, Li N, Liang F, Wu G, Huo Y H, Lu C Y, Peng C Z, Nemoto K, Munro W J, Zhu X, Pan J W and Gong M 2024 Phys. Rev. A 109 062614
[41] Huang X, Wang K, Xiao L, Gao L, Lin H and Xue P 2023 Phys. Rev. A 107 L030201
[42] Qu D, Zhan X, Lin H and Xue P 2023 Phys. Rev. B 108 L180301
[43] Zhu G, Chen Y, Hasegawa Y and Xue P 2023 Phys. Rev. Lett. 131 240401
[44] Maillette de Buy Wenniger I, Thomas S E, Maffei M, Wein S C, Pont M, Belabas N, Prasad S, Harouri A, Lemaıtre A, Sagnes I, Somaschi N, Auffeves A and Senellart P 2023 Phys. Rev. Lett. 131 260401
[45] Zhang J, Wang P, Chen W, Cai Z, Qiao M, Li R, Huang Y, Tian H, Tu H, Cui K, Yan L, Zhang J, Zhang J, Yung M and Kim K 2025 Phys. Rev. Lett. 135 140403
[46] Dou F Q and Yang F M 2023 Phys. Rev. A 107 023725
[47] Delmonte A, Crescente A, Carrega M, Ferraro D and Sassetti M 2021 Entropy 23 612
[48] Yang D L, Yang F M and Dou F Q 2024 Phys. Rev. B 109 235432
[49] Downing C A and Ukhtary M S 2023 Commun. Phys. 6 322
[50] Downing C A and Ukhtary M S 2024 Phys. Rev. A 109 052206
[51] Konar T K, Patra A, Gupta R, Ghosh S and SenDe A 2024 Phys. Rev. A 110 022226
[52] Downing C and Ukhtary M 2024 Phys. Lett. A 518 129693
[53] Georgiades N P, Polzik E S, Edamatsu K, Kimble H J and Parkins A S 1995 Phys. Rev. Lett. 75 3426
[54] Wang Y D and Clerk A A 2013 Phys. Rev. Lett. 110 253601
[55] Kimchi-Schwartz M E, Martin L, Flurin E, Aron C, Kulkarni M, Tureci H E and Siddiqi I 2016 Phys. Rev. Lett. 116 240503
[56] Zeytinoglu S, Imamoglu A M C and Huber S 2017 Phys. Rev. X 7 021041
[57] Eddins A, Kreikebaum J M, Toyli D M, Levenson-Falk E M, Dove A, Livingston W P, Levitan B A, Govia L C G, Clerk A A and Siddiqi I 2019 Phys. Rev. X 9 011004
[58] Bienfait A, Campagne-Ibarcq P, Kiilerich A H, Zhou X, Probst S, Pla J J, Schenkel T, Vion D, Esteve D, Morton J J L, Moelmer K and Bertet P 2017 Phys. Rev. X 7 041011
[59] Kraus B and Cirac J I 2004 Phys. Rev. Lett. 92 013602
[60] Yang C J, An J H, Yang W and Li Y 2015 Phys. Rev. A 92 062311
[61] Liu R and An J H 2025 Phys. Rev. A 111 043718
[62] Hou Q Z, You J B, Yang W L, An J H, Chen C Y and Feng M 2018 Opt. Express 26 20459
[63] Bai S Y and An J H 2021 Phys. Rev. Lett. 127 083602
[64] Carmichael H J, Lane A S and Walls D F 1987 Phys. Rev. Lett. 58 2539
[65] Toyli D M, Eddins A W, Boutin S, Puri S, Hover D, Bolkhovsky V, Oliver W D, Blais A and Siddiqi I 2016 Phys. Rev. X 6 031004
[66] Clark J B, Lecocq F, Simmonds R W, Aumentado J and Teufel J D 2017 Nature 541 191
[67] Wilson-Rae I, Nooshi N, Zwerger W and Kippenberg T J 2007 Phys. Rev. Lett. 99 093901
[68] Cirac J I, Blatt R, Zoller P and Phillips W D 1992 Phys. Rev. A 46 2668
[69] Cirac J I 1992 Phys. Rev. A 46 4354
[70] Zhou P and Swain S 1998 Phys. Rev. A 58 1515
[71] Manzano G 2018 Phys. Rev. E 98 042123
[72] Polzik E S 2008 Nature 453 45
[73] Shen H Z, Shang C, Zhou Y H and Yi X X 2018 Phys. Rev. A 98 023856
[74] Shen H Z, Wang Q, Wang J and Yi X X 2020 Phys. Rev. A 101 013826
[75] Shen H Z, Yang J F and Yi X X 2024 Phys. Rev. A 109 043714
[76] Vacchini B and Breuer H P 2010 Phys. Rev. A 81 042103
[77] Breuer H P, Laine E M and Piilo J 2009 Phys. Rev. Lett. 103 210401
[78] Shen H Z, Xu S, Cui H T and Yi X X 2019 Phys. Rev. A 99 032101
[79] Yang W L, An J H, Zhang C, Feng M and Oh C H 2013 Phys. Rev. A 87 022312
[1] Adiabatic holonomic quantum computation in decoherence-free subspaces with two-body interaction
Xiaoyu Sun(孙晓雨), Lei Qiao(乔雷), and Peizi Zhao(赵培茈). Chin. Phys. B, 2025, 34(9): 090308.
[2] Correcting on-chip distortion of control pulses with silicon spin qubits
Ming Ni(倪铭), Rong-Long Ma(马荣龙), Zhen-Zhen Kong(孔真真), Ning Chu(楚凝), Wei-Zhu Liao(廖伟筑), Sheng-Kai Zhu(祝圣凯), Chu Wang(王儲), Gang Luo(罗刚), Di Liu(刘頔), Gang Cao(曹刚), Gui-Lei Wang(王桂磊), Hai-Ou Li(李海欧), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2025, 34(1): 010308.
[3] Preparation of entangled W states based on the cavity QED system
Ke Li(李可) and Jun-Long Zhao(赵军龙). Chin. Phys. B, 2024, 33(9): 090306.
[4] Simulations of superconducting quantum gates by digital flux tuner for qubits
Xiao Geng(耿霄), Kaiyong He(何楷泳), Jianshe Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2024, 33(7): 070305.
[5] Quantum circuit-based proxy blind signatures: A novel approach and experimental evaluation on the IBM quantum cloud platform
Xiaoping Lou(娄小平), Huiru Zan(昝慧茹), and Xuejiao Xu(徐雪娇). Chin. Phys. B, 2024, 33(5): 050307.
[6] M2CS: A microwave measurement and control system for large-scale superconducting quantum processors
Jiawei Zhang(张家蔚), Xuandong Sun(孙炫东), Zechen Guo(郭泽臣), Yuefeng Yuan(袁跃峰), Yubin Zhang(张玉斌), Ji Chu(储继), Wenhui Huang(黄文辉), Yongqi Liang(梁咏棋), Jiawei Qiu(邱嘉威), Daxiong Sun(孙大雄), Ziyu Tao(陶子予), Jiajian Zhang(张家健), Weijie Guo(郭伟杰), Ji Jiang(蒋骥), Xiayu Linpeng(林彭夏雨), Yang Liu(刘阳), Wenhui Ren(任文慧), Jingjing Niu(牛晶晶), Youpeng Zhong(钟有鹏), and Dapeng Yu(俞大鹏). Chin. Phys. B, 2024, 33(12): 120309.
[7] Exact quantum dynamics for two-level systems with time-dependent driving
Zhi-Cheng He(贺郅程), Yi-Xuan Wu(吴奕璇), and Zheng-Yuan Xue(薛正远). Chin. Phys. B, 2024, 33(12): 120310.
[8] Threshold-independent method for single-shot readout of spin qubits in semiconductor quantum dots
Rui-Zi Hu(胡睿梓), Sheng-Kai Zhu(祝圣凯), Xin Zhang(张鑫), Yuan Zhou(周圆), Ming Ni(倪铭), Rong-Long Ma(马荣龙), Gang Luo(罗刚), Zhen-Zhen Kong(孔真真), Gui-Lei Wang(王桂磊), Gang Cao(曹刚), Hai-Ou Li(李海欧), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2024, 33(1): 010304.
[9] Majorana noise model and its influence on the power spectrum
Shumeng Chen(陈书梦), Sifan Ding(丁思凡), Zhen-Tao Zhang(张振涛), and Dong E. Liu(刘东). Chin. Phys. B, 2024, 33(1): 017101.
[10] Chiral current regulation and detection of Berry phase in triangular triple quantum dots
Yue Qi(齐月), Yi-Ming Liu(刘一铭), Yuan-Dong Wang(王援东), Jian-Hua Wei(魏建华), and Zhen-Gang Zhu(朱振刚). Chin. Phys. B, 2023, 32(8): 087304.
[11] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[12] Preparation of squeezed light with low average photon number based on dynamic Casimir effect
Na Li(李娜), Zi-Jian Lin(林资鉴), Mei-Song Wei(韦梅松), Ming-Jie Liao(廖明杰),Jing-Ping Xu(许静平), San-Huang Ke(柯三黄), and Ya-Ping Yang(羊亚平). Chin. Phys. B, 2023, 32(12): 120301.
[13] Blind quantum computation with a client performing different single-qubit gates
Guang-Yang Wu(吴光阳), Zhen Yang(杨振), Yu-Zhan Yan(严玉瞻), Yuan-Mao Luo(罗元茂), Ming-Qiang Bai(柏明强), and Zhi-Wen Mo(莫智文). Chin. Phys. B, 2023, 32(11): 110302.
[14] Realization of high-fidelity and robust geometric gates with time-optimal control technique in superconducting quantum circuit
Zhimin Wang(王治旻), Zhuang Ma(马壮), Xiangmin Yu(喻祥敏), Wen Zheng(郑文), Kun Zhou(周坤), Yujia Zhang(张宇佳), Yu Zhang(张钰), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shaoxiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2023, 32(10): 100304.
[15] Analysis and improvement of verifiable blind quantum computation
Min Xiao(肖敏) and Yannan Zhang(张艳南). Chin. Phys. B, 2022, 31(5): 050305.
No Suggested Reading articles found!