|
|
|
Enhancing the performance of quantum battery by squeezing reservoir engineering |
| Yue Li(李月)1,2, Rong-Fang Liu(刘蓉芳)1,3, Jia-Bin You(游佳斌)4,5,†, Wan-Li Yang(杨万里)1,‡, and Hua Guan(管桦)1 |
1 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 3 Key Laboratory of Quantum Theory and Applications of MoE, Lanzhou Center for Theoretical Physics, and Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou 730000, China; 4 Quantum Innovation Centre (Q. InC), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore; 5 Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), Singapore 138632, Republic of Singapore |
|
|
|
|
Abstract Reservoir engineering has been widely used in various quantum technologies. Based on a cavity-QED (quantum electrodynamics) model, we propose a potentially practical scheme using squeezed-vacuum reservoir engineering to optimize the performance of a quantum battery (QB) located inside a cavity driven by a broadband squeezed laser, which acts as a squeezed-vacuum reservoir. Using the reduced master equation of the QB obtained via the adiabatic elimination method, we focus on the QB’s charging dynamics under tunable squeezed reservoirs governed by parametrically controlled squeezing parameters, which dictate the efficiency of energy transfer and the extractable work (ergotropy) of the QB. We show that increasing the squeezing strength improves the charging rate and enables rapid energy transfer, whereas the steady-state energy of the QB saturates at specific values of the squeezing parameter. Notably, the ergotropy of the QB reaches its maximum at a critical squeezing strength and does not scale monotonically with the squeezing strength. This nonmonotonic behavior underscores the existence of optimal parameter regimes, through which the performance of the QB can be significantly enhanced.
|
Received: 22 October 2025
Revised: 06 November 2025
Accepted manuscript online: 11 November 2025
|
|
PACS:
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
| |
42.50.Pq
|
(Cavity quantum electrodynamics; micromasers)
|
|
| Fund: This project is supported by the National Natural Science Foundation of China (Grants No. 12274422) and the Natural Science Foundation of Hubei Province (Grant No. 2022CFA013). J.-B. Y. acknowledges support from A*STAR (Grant Nos. C230917003 and C230917007) and Q.InC Strategic Research and Translational Thrust. |
Corresponding Authors:
Jia-Bin You, Wan-Li Yang
E-mail: you_jiabin@a-star.edu.sg;ywl@wipm.ac.cn
|
Cite this article:
Yue Li(李月), Rong-Fang Liu(刘蓉芳), Jia-Bin You(游佳斌), Wan-Li Yang(杨万里), and Hua Guan(管桦) Enhancing the performance of quantum battery by squeezing reservoir engineering 2026 Chin. Phys. B 35 010303
|
[1] Alicki R and Fannes M 2013 Phys. Rev. E 87 042123 [2] Ferraro D, Campisi M, Andolina G M, Pellegrini V and Polini M 2018 Phys. Rev. Lett. 120 117702 [3] Pokhrel S and Gea-Banacloche J 2025 Phys. Rev. Lett. 134 130401 [4] Dou F Q, Zhou H and Sun J A 2022 Phys. Rev. A 106 032212 [5] Li Y L, Liao C H and Xiao X 2025 Chin. Phys. B 34 010307 [6] Liu F, Yang H Y, Wang S L, Wang J Z, Zhang K and Wang X H 2025 Chin. Phys. B 34 020306 [7] Yu W L, Zhang Y, Li H, Wei G F, Han L P, Tian F and Zou J 2023 Chin. Phys. B 32 010302 [8] Andolina G M, Keck M, Mari A, Campisi M, Giovannetti V and Polini M 2019 Phys. Rev. Lett. 122 047702 [9] Gyhm J Y, Safr anek D and Rosa D 2022 Phys. Rev. Lett. 128 140501 [10] Rossini D, Andolina G M, Rosa D, Carrega M and Polini M 2020 Phys. Rev. Lett. 125 236402 [11] Song W L, Liu H B, Zhou B, Yang W L and An J H 2024 Phys. Rev. Lett. 132 090401 [12] Song W L, Wang J L, Zhou B, Yang W L and An J H 2025 Phys. Rev. Lett. 135 020405 [13] Farina D, Andolina G M, Mari A, Polini M and Giovannetti V 2019 Phys. Rev. B 99 035421 [14] Julia-Farr e S, Salamon T, Riera A, Bera M N and Lewenstein M 2020 Phys. Rev. Res. 2 023113 [15] Abah O, De Chiara G, Paternostro M and Puebla R 2022 Phys. Rev. Res. 4 L022017 [16] Kamin F H, Tabesh F T, Salimi S and Santos A C 2020 Phys. Rev. E 102 052109 [17] Shi H L, Ding S, Wan Q K, Wang X H and Yang W L 2022 Phys. Rev. Lett. 129 130602 [18] Wang L, Liu S Q, Wu F l, Fan H and Liu S Y 2023 Phys. Rev. A 108 062402 [19] Sen K and Sen U 2021 Phys. Rev. A 104 L030402 [20] Imai S, Guhne O and Nimmrichter S 2023 Phys. Rev. A 107 022215 [21] Centrone F, Mancino L and Paternostro M 2023 Phys. Rev. A 108 052213 [22] Hovhannisyan K V, Perarnau-Llobet M, Huber M and Acín A 2013 Phys. Rev. Lett. 111 240401 [23] Monsel J, Fellous-Asiani M, Huard B and Auffeves A 2020 Phys. Rev. Lett. 124 130601 [24] Santos A C, C akmak B, Campbell S and Zinner N T 2019 Phys. Rev. E 100 032107 [25] Binder F C, Vinjanampathy S, Modi K and Goold J 2015 New J. Phys. 17 075015 [26] Le T P, Levinsen J, Modi K, Parish M M and Pollock F A 2018 Phys. Rev. A 97 022106 [27] Campaioli F, Pollock F A, Binder F C, Celeri L, Goold J, Vinjanampa- thy S and Modi K 2017 Phys. Rev. Lett. 118 150601 [28] Arjmandi M B, Shokri A, Faizi E and Mohammadi H 2022 Phys. Rev. A 106 062609 [29] Crescente A, Carrega M, Sassetti M and Ferraro D 2020 Phys. Rev. B 102 245407 [30] Andolina G M, Keck M, Mari A, Giovannetti V and Polini M 2019 Phys. Rev. B 99 205437 [31] Dou F Q, Lu Y Q, Wang Y J and Sun J A 2022 Phys. Rev. B 105 115405 [32] Skrzypczyk P, Short A J and Popescu S 2014 Nat. Commun. 5 4185 [33] Zhang Y Y, Yang T R, Fu L and Wang X 2019 Phys. Rev. E 99 052106 [34] Chang W, Yang T R, Dong H, Fu L, Wang X and Zhang Y Y 2021 New J. Phys. 23 103026 [35] Quach J Q, McGhee K E, Ganzer L, Rouse D M, Lovett B W, Gauger E M, Keeling J, Cerullo G, Lidzey D G and Virgili T 2022 Sci. Adv. 8 eabk3160 [36] Hu C K, Qiu J, Souza P J P, Yuan J, Zhou Y, Zhang L, Chu J, Pan X, Hu L, Li J, Xu Y, Zhong Y, Liu S, Yan F, Tan D, Bachelard R, Villas-Boas C J, Santos A C and Yu D 2022 Quantum Sci. Technol. 7 045018 [37] Joshi J and Mahesh T S 2022 Phys. Rev. A 106 042601 [38] Gemme G, Grossi M, Ferraro D, Vallecorsa S and Sassetti M 2022 Batteries 8 43 [39] Zheng R H, Ning W, Yang Z B, Xia Y and Zheng S B 2022 New J. Phys. 24 063031 [40] Yu J, Wang S, Liu K, Zha C, Wu Y, Chen F, Ye Y, Li S, Zhu Q, Guo S, Qian H, Huang H L, Zhao Y, Ying C, Fan D, Wu D, Su H, Deng H, Rong H, Zhang K, Cao S, Lin J, Xu Y, Guo C, Li N, Liang F, Wu G, Huo Y H, Lu C Y, Peng C Z, Nemoto K, Munro W J, Zhu X, Pan J W and Gong M 2024 Phys. Rev. A 109 062614 [41] Huang X, Wang K, Xiao L, Gao L, Lin H and Xue P 2023 Phys. Rev. A 107 L030201 [42] Qu D, Zhan X, Lin H and Xue P 2023 Phys. Rev. B 108 L180301 [43] Zhu G, Chen Y, Hasegawa Y and Xue P 2023 Phys. Rev. Lett. 131 240401 [44] Maillette de Buy Wenniger I, Thomas S E, Maffei M, Wein S C, Pont M, Belabas N, Prasad S, Harouri A, Lemaıtre A, Sagnes I, Somaschi N, Auffeves A and Senellart P 2023 Phys. Rev. Lett. 131 260401 [45] Zhang J, Wang P, Chen W, Cai Z, Qiao M, Li R, Huang Y, Tian H, Tu H, Cui K, Yan L, Zhang J, Zhang J, Yung M and Kim K 2025 Phys. Rev. Lett. 135 140403 [46] Dou F Q and Yang F M 2023 Phys. Rev. A 107 023725 [47] Delmonte A, Crescente A, Carrega M, Ferraro D and Sassetti M 2021 Entropy 23 612 [48] Yang D L, Yang F M and Dou F Q 2024 Phys. Rev. B 109 235432 [49] Downing C A and Ukhtary M S 2023 Commun. Phys. 6 322 [50] Downing C A and Ukhtary M S 2024 Phys. Rev. A 109 052206 [51] Konar T K, Patra A, Gupta R, Ghosh S and SenDe A 2024 Phys. Rev. A 110 022226 [52] Downing C and Ukhtary M 2024 Phys. Lett. A 518 129693 [53] Georgiades N P, Polzik E S, Edamatsu K, Kimble H J and Parkins A S 1995 Phys. Rev. Lett. 75 3426 [54] Wang Y D and Clerk A A 2013 Phys. Rev. Lett. 110 253601 [55] Kimchi-Schwartz M E, Martin L, Flurin E, Aron C, Kulkarni M, Tureci H E and Siddiqi I 2016 Phys. Rev. Lett. 116 240503 [56] Zeytinoglu S, Imamoglu A M C and Huber S 2017 Phys. Rev. X 7 021041 [57] Eddins A, Kreikebaum J M, Toyli D M, Levenson-Falk E M, Dove A, Livingston W P, Levitan B A, Govia L C G, Clerk A A and Siddiqi I 2019 Phys. Rev. X 9 011004 [58] Bienfait A, Campagne-Ibarcq P, Kiilerich A H, Zhou X, Probst S, Pla J J, Schenkel T, Vion D, Esteve D, Morton J J L, Moelmer K and Bertet P 2017 Phys. Rev. X 7 041011 [59] Kraus B and Cirac J I 2004 Phys. Rev. Lett. 92 013602 [60] Yang C J, An J H, Yang W and Li Y 2015 Phys. Rev. A 92 062311 [61] Liu R and An J H 2025 Phys. Rev. A 111 043718 [62] Hou Q Z, You J B, Yang W L, An J H, Chen C Y and Feng M 2018 Opt. Express 26 20459 [63] Bai S Y and An J H 2021 Phys. Rev. Lett. 127 083602 [64] Carmichael H J, Lane A S and Walls D F 1987 Phys. Rev. Lett. 58 2539 [65] Toyli D M, Eddins A W, Boutin S, Puri S, Hover D, Bolkhovsky V, Oliver W D, Blais A and Siddiqi I 2016 Phys. Rev. X 6 031004 [66] Clark J B, Lecocq F, Simmonds R W, Aumentado J and Teufel J D 2017 Nature 541 191 [67] Wilson-Rae I, Nooshi N, Zwerger W and Kippenberg T J 2007 Phys. Rev. Lett. 99 093901 [68] Cirac J I, Blatt R, Zoller P and Phillips W D 1992 Phys. Rev. A 46 2668 [69] Cirac J I 1992 Phys. Rev. A 46 4354 [70] Zhou P and Swain S 1998 Phys. Rev. A 58 1515 [71] Manzano G 2018 Phys. Rev. E 98 042123 [72] Polzik E S 2008 Nature 453 45 [73] Shen H Z, Shang C, Zhou Y H and Yi X X 2018 Phys. Rev. A 98 023856 [74] Shen H Z, Wang Q, Wang J and Yi X X 2020 Phys. Rev. A 101 013826 [75] Shen H Z, Yang J F and Yi X X 2024 Phys. Rev. A 109 043714 [76] Vacchini B and Breuer H P 2010 Phys. Rev. A 81 042103 [77] Breuer H P, Laine E M and Piilo J 2009 Phys. Rev. Lett. 103 210401 [78] Shen H Z, Xu S, Cui H T and Yi X X 2019 Phys. Rev. A 99 032101 [79] Yang W L, An J H, Zhang C, Feng M and Oh C H 2013 Phys. Rev. A 87 022312 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|