Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(7): 070307    DOI: 10.1088/1674-1056/accd57
RAPID COMMUNICATION Prev   Next  

Circuit quantum electrodynamics with a quadruple quantum dot

Ting Lin(林霆)1,2, Hai-Ou Li(李海欧)1,2, Gang Cao(曹刚)1,2,†, and Guo-Ping Guo(郭国平)1,2,3
1 CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China;
2 CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China;
3 Origin Quantum Computing Company Limited, Hefei 230088, China
Abstract  In this theoretical work, we describe a mechanism for the coupling between a plane structure consisting of four quantum dots and a resonator. We systematically study the dependence of the quadruple coupling strength and the qubit decoherence rate and point out the optimized operating position of the hybrid system. According to the transmission given by the input-output theory, the signatures in the resonator spectrum are predicted. Furthermore, based on the parameters already achieved in previous works, we prove that the device described in this paper can achieve the strong coupling limit, i.e., this approach can be used for system extension under the existing technical conditions. Our results show an effective and promotable approach to couple quantum dot structures in plane with the resonator and propose a meaningful extension method.
Keywords:  semiconductor qubit      circuit quantum electrodynamics (QED)      semiconductor quantum dot      scalable semiconductor-based circuit QED architectures  
Received:  14 February 2023      Revised:  31 March 2023      Accepted manuscript online:  17 April 2023
PACS:  73.21.La (Quantum dots)  
  03.67.Lx (Quantum computation architectures and implementations)  
  42.50.Wk (Mechanical effects of light on material media, microstructures and particles)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 92265113, 12074368, and 12034018).
Corresponding Authors:  Gang Cao     E-mail:  gcao@ustc.edu.cn

Cite this article: 

Ting Lin(林霆), Hai-Ou Li(李海欧), Gang Cao(曹刚), and Guo-Ping Guo(郭国平) Circuit quantum electrodynamics with a quadruple quantum dot 2023 Chin. Phys. B 32 070307

[1] Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120
[2] Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C and O'Brien J L 2010 Nature 464 45
[3] Zwanenburg F A, Dzurak A S, Morello A, Simmons M Y, Hollenberg L C L, Klimeck G, Rogge S, Coppersmith S N and Eriksson M A 2013 Rev. Mod. Phys. 85 961
[4] Zhang X, Li H O, Cao G, Xiao M, Guo G C and Guo G P 2019 Natl. Sci. Rev. 6 32
[5] Chen Y, Lin F L, Liang X and Jiang N Q 2019 Chin. Phys. Lett. 36 070302
[6] Fujita T, Baart T A, Reichl C, Wegscheider W and Vandersypen L M K 2017 npj Quantum Inf. 3 22
[7] Li R, Petit L, Franke D P, Dehollain J P, Helsen J, Steudtner M, Thomas N K, Yoscovits Z R, Singh K J and Wehner S 2018 Sci. Adv. 4 eaar3960
[8] Mills A, Zajac D, Gullans M, Schupp F, Hazard T and Petta J 2019 Nat. Commun. 10 1
[9] Majer J, Chow J M, Gambetta J M, Koch J, Johnson B R, Schreier J A, Frunzio L, Schuster D I, Houck A A and Wallraff A 2007 Nature 449 443
[10] Sillanpää M A, Park J I and Simmonds R W 2007 Nature 449 438
[11] Blais A, Gambetta J, Wallraff A, Schuster D I, Girvin S M, Devoret M H and Schoelkopf R J 2007 Phys. Rev. A 75 032329
[12] Song C, Xu K, Liu W, Yang C P, Zheng S B, Deng H, Xie Q, Huang K, Guo Q and Zhang L 2017 Phys. Rev. Lett. 119 180511
[13] Astner T, Nevlacsil S, Peterschofsky N, Angerer A, Rotter S, Putz S, Schmiedmayer J and Majer J 2017 Phys. Rev. Lett. 118 140502
[14] Burkard G and Petta J R 2016 Phys. Rev. B 94 195305
[15] Harvey-Collard P, Dijkema J, Zheng G, Sammak A, Scappucci G and Vandersypen L M 2022 Phys. Rev. X 12 021026
[16] Petit L, Eenink H, Russ M, Lawrie W, Hendrickx N, Philips S, Clarke J, Vandersypen L and Veldhorst M 2020 Nature 580 355
[17] Yang C H, Leon R, Hwang J, Saraiva A, Tanttu T, Huang W, Camirand Lemyre J, Chan K W, Tan K and Hudson F E 2020 Nature 580 350
[18] Samkharadze N, Bruno A, Scarlino P, Zheng G, DiVincenzo D, DiCarlo L and Vandersypen L 2016 Phys. Rev. Appl. 5 044004
[19] Wei X Y, Pan J Z, Lu Y P, Jiang J L, Li Z S, Lu S, Tu X C, Zhao Q Y, Jia X Q and Kang L 2020 Chin. Phys. B 29 128401
[20] Childress L, Sorensen A S and Lukin M D 2004 Phys. Rev. A 69 042302
[21] Hu X D, Liu Y X and Nori F 2012 Phys. Rev. B 86 035314
[22] Srinivasa V, Taylor J M and Tahan C 2016 Phys. Rev. B 94 205421
[23] Benito M, Mi X, Taylor J M, Petta J R and Burkard G 2017 Phys. Rev. B 96 235434
[24] Benito M, Petta J R and Burkard G 2019 Phys. Rev. B 100 081412
[25] Stockklauser A, Scarlino P, Koski J V, Gasparinetti S, Andersen C K, Reichl C, Wegscheider W, Ihn T, Ensslin K and Wallraff A 2017 Phys. Rev. X 7 011030
[26] Mi X, Benito M, Putz S, Zajac D M, Taylor J M, Burkard G and Petta J R 2018 Nature 555 599
[27] Samkharadze N, Zheng G, Kalhor N, Brousse D, Sammak A, Mendes U C, Blais A, Scappucci G and Vandersypen L M K 2018 Science 359 1123
[28] Chen M B, Jiang S L, Wang N, Wang B C, Lin T, Gu S S, Li H O, Cao G and Guo G P 2021 Phys. Rev. Appl. 15 044045
[29] Yu C X, Zihlmann S, Abadillo-Uriel J C, Michal V P, Rambal N, Niebojewski H, Bedecarrats T, Vinet M, Dumur E and Filippone M 2023 Nat. Nanotechnol. 1-6
[30] Lin T, Gu S S, Xu Y-Q, Jiang S L, Wang N, Wang B C, Li H O, Cao G and Guo G P 2022 Appl. Phys. Lett. 121 184004)
[31] van Woerkom D J, Scarlino P, Ungerer J H, Müller C, Koski J V, Landig A J, Reichl C, Wegscheider W, Ihn T, Ensslin K and Wallraff A 2018 Phys. Rev. X 8 041018
[32] Borjans F, Croot X G, Mi X, Gullans M J and Petta J R 2020 Nature 577 195
[33] Wang B, Lin T, Li H, Gu S, Chen M, Guo G, Jiang H, Hu X, Cao G and Guo G 2021 Science Bulletin 66 332
[34] Koski J V, Landig A J, Russ M, Abadillo-Uriel J C, Scarlino P, Kratochwil B, Reichl C, Wegscheider W, Burkard G and Friesen M 2020 Nat. Phys. 16 642
[35] Friesen M, Ghosh J, Eriksson M and Coppersmith S 2017 Nat. Commun. 8 15923
[36] Ha W, Ha S D, Choi M D, Tang Y, Schmitz A E, Levendorf M P, Lee K, Chappell J M, Adams T S and Hulbert D R 2021 Nano Lett. 22 1443
[37] Landig A J, Koski J V, Scarlino P, Mendes U, Blais A, Reichl C, Wegscheider W, Wallraff A, Ensslin K and Ihn T 2018 Nature 560 179
[38] Gasser U, Gustavsson S, Küng B, Ensslin K, Ihn T, Driscoll D and Gossard A 2009 Phys. Rev. B 79 035303
[39] Mi X, Cady J V, Zajac D M, Deelman P W and Petta J R 2017 Science 355 156
[40] Scarlino P, van Woerkom D J, Stockklauser A, Koski J V, Collodo M C, Gasparinetti S, Reichl C, Wegscheider W, Ihn T, Ensslin K and Wallraff A 2019 Phys. Rev. Lett. 122 206802
[41] Russ M, Ginzel F and Burkard G 2016 Phys. Rev.B 94 165411
[42] Abadillo-Uriel J, Eriksson M, Coppersmith S and Friesen M 2019 Nat. Commun. 10 5641
[1] Coherent manipulation of a tunable hybrid qubit via microwave control
Si-Si Gu(顾思思), Bao-Chuan Wang(王保传), Hai-Ou Li(李海欧), Gang Cao(曹刚), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2023, 32(8): 087302.
[2] Change-over switch for quantum states transfer with topological channels in a circuit-QED lattice
Liu-Yong Cheng(程留永), Li-Na Zheng(郑黎娜), Ruixiang Wu(吴瑞祥), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(2): 020305.
[3] Pure spin-current diode based on interacting quantum dot tunneling junction
Zhengzhong Zhang(张正中), Min Yu(余敏), Rui Bo(薄锐), Chao Wang(王超), and Hao Liu(刘昊). Chin. Phys. B, 2021, 30(11): 117305.
[4] Spin manipulation in semiconductor quantum dots qubit
Ke Wang(王柯), Hai-Ou Li(李海欧), Ming Xiao(肖明), Gang Cao(曹刚), Guo-Ping Guo(郭国平). Chin. Phys. B, 2018, 27(9): 090308.
[5] Qubits based on semiconductor quantum dots
Xin Zhang(张鑫), Hai-Ou Li(李海欧), Ke Wang(王柯), Gang Cao(曹刚), Ming Xiao(肖明), Guo-Ping Guo(郭国平). Chin. Phys. B, 2018, 27(2): 020305.
[6] Phase transition and charge transport through a triple dot device beyond the Kondo regime
Yong-Chen Xiong(熊永臣), Zhan-Wu Zhu(朱占武), Ze-Dong He(贺泽东). Chin. Phys. B, 2018, 27(10): 108503.
[7] Steady-state linear optical properties and Kerr nonlinear optical response of a four-level quantum dot with phonon-assisted transition
Yan-Chao She(佘彦超), Ting-Ting Luo(罗婷婷), Wei-Xi Zhang(张蔚曦),Mao-Wu Ran(冉茂武), Deng-Long Wang(王登龙). Chin. Phys. B, 2016, 25(1): 014202.
[8] Modification of the spontaneous emission of quantum dots near the surface of a three-dimensional colloidal photonic crystal
Liu Zheng-Qi(刘正奇), Feng Tian-Hua(冯天华), Dai Qiao-Feng(戴峭峰), Wu Li-Jun(吴立军), Lan Sheng(兰胜), Ding Cai-Rong(丁才蓉), Wang He-Zhou(汪河洲), and Gopal Achanta Venu. Chin. Phys. B, 2010, 19(11): 114210.
[9] Size-dependent optical properties and carriers dynamics in CdSe/ZnS quantum dots
Ma Hong(马红), Ma Guo-Hong(马国宏), Wang Wen-Jun(王文军), Gao Xue-Xi(高学喜), and Ma Hong-Liang(马洪良). Chin. Phys. B, 2008, 17(4): 1280-1285.
No Suggested Reading articles found!