|
|
Circuit quantum electrodynamics with a quadruple quantum dot |
Ting Lin(林霆)1,2, Hai-Ou Li(李海欧)1,2, Gang Cao(曹刚)1,2,†, and Guo-Ping Guo(郭国平)1,2,3 |
1 CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China; 2 CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China; 3 Origin Quantum Computing Company Limited, Hefei 230088, China |
|
|
Abstract In this theoretical work, we describe a mechanism for the coupling between a plane structure consisting of four quantum dots and a resonator. We systematically study the dependence of the quadruple coupling strength and the qubit decoherence rate and point out the optimized operating position of the hybrid system. According to the transmission given by the input-output theory, the signatures in the resonator spectrum are predicted. Furthermore, based on the parameters already achieved in previous works, we prove that the device described in this paper can achieve the strong coupling limit, i.e., this approach can be used for system extension under the existing technical conditions. Our results show an effective and promotable approach to couple quantum dot structures in plane with the resonator and propose a meaningful extension method.
|
Received: 14 February 2023
Revised: 31 March 2023
Accepted manuscript online: 17 April 2023
|
PACS:
|
73.21.La
|
(Quantum dots)
|
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
42.50.Wk
|
(Mechanical effects of light on material media, microstructures and particles)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 92265113, 12074368, and 12034018). |
Corresponding Authors:
Gang Cao
E-mail: gcao@ustc.edu.cn
|
Cite this article:
Ting Lin(林霆), Hai-Ou Li(李海欧), Gang Cao(曹刚), and Guo-Ping Guo(郭国平) Circuit quantum electrodynamics with a quadruple quantum dot 2023 Chin. Phys. B 32 070307
|
[1] Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120 [2] Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C and O'Brien J L 2010 Nature 464 45 [3] Zwanenburg F A, Dzurak A S, Morello A, Simmons M Y, Hollenberg L C L, Klimeck G, Rogge S, Coppersmith S N and Eriksson M A 2013 Rev. Mod. Phys. 85 961 [4] Zhang X, Li H O, Cao G, Xiao M, Guo G C and Guo G P 2019 Natl. Sci. Rev. 6 32 [5] Chen Y, Lin F L, Liang X and Jiang N Q 2019 Chin. Phys. Lett. 36 070302 [6] Fujita T, Baart T A, Reichl C, Wegscheider W and Vandersypen L M K 2017 npj Quantum Inf. 3 22 [7] Li R, Petit L, Franke D P, Dehollain J P, Helsen J, Steudtner M, Thomas N K, Yoscovits Z R, Singh K J and Wehner S 2018 Sci. Adv. 4 eaar3960 [8] Mills A, Zajac D, Gullans M, Schupp F, Hazard T and Petta J 2019 Nat. Commun. 10 1 [9] Majer J, Chow J M, Gambetta J M, Koch J, Johnson B R, Schreier J A, Frunzio L, Schuster D I, Houck A A and Wallraff A 2007 Nature 449 443 [10] Sillanpää M A, Park J I and Simmonds R W 2007 Nature 449 438 [11] Blais A, Gambetta J, Wallraff A, Schuster D I, Girvin S M, Devoret M H and Schoelkopf R J 2007 Phys. Rev. A 75 032329 [12] Song C, Xu K, Liu W, Yang C P, Zheng S B, Deng H, Xie Q, Huang K, Guo Q and Zhang L 2017 Phys. Rev. Lett. 119 180511 [13] Astner T, Nevlacsil S, Peterschofsky N, Angerer A, Rotter S, Putz S, Schmiedmayer J and Majer J 2017 Phys. Rev. Lett. 118 140502 [14] Burkard G and Petta J R 2016 Phys. Rev. B 94 195305 [15] Harvey-Collard P, Dijkema J, Zheng G, Sammak A, Scappucci G and Vandersypen L M 2022 Phys. Rev. X 12 021026 [16] Petit L, Eenink H, Russ M, Lawrie W, Hendrickx N, Philips S, Clarke J, Vandersypen L and Veldhorst M 2020 Nature 580 355 [17] Yang C H, Leon R, Hwang J, Saraiva A, Tanttu T, Huang W, Camirand Lemyre J, Chan K W, Tan K and Hudson F E 2020 Nature 580 350 [18] Samkharadze N, Bruno A, Scarlino P, Zheng G, DiVincenzo D, DiCarlo L and Vandersypen L 2016 Phys. Rev. Appl. 5 044004 [19] Wei X Y, Pan J Z, Lu Y P, Jiang J L, Li Z S, Lu S, Tu X C, Zhao Q Y, Jia X Q and Kang L 2020 Chin. Phys. B 29 128401 [20] Childress L, Sorensen A S and Lukin M D 2004 Phys. Rev. A 69 042302 [21] Hu X D, Liu Y X and Nori F 2012 Phys. Rev. B 86 035314 [22] Srinivasa V, Taylor J M and Tahan C 2016 Phys. Rev. B 94 205421 [23] Benito M, Mi X, Taylor J M, Petta J R and Burkard G 2017 Phys. Rev. B 96 235434 [24] Benito M, Petta J R and Burkard G 2019 Phys. Rev. B 100 081412 [25] Stockklauser A, Scarlino P, Koski J V, Gasparinetti S, Andersen C K, Reichl C, Wegscheider W, Ihn T, Ensslin K and Wallraff A 2017 Phys. Rev. X 7 011030 [26] Mi X, Benito M, Putz S, Zajac D M, Taylor J M, Burkard G and Petta J R 2018 Nature 555 599 [27] Samkharadze N, Zheng G, Kalhor N, Brousse D, Sammak A, Mendes U C, Blais A, Scappucci G and Vandersypen L M K 2018 Science 359 1123 [28] Chen M B, Jiang S L, Wang N, Wang B C, Lin T, Gu S S, Li H O, Cao G and Guo G P 2021 Phys. Rev. Appl. 15 044045 [29] Yu C X, Zihlmann S, Abadillo-Uriel J C, Michal V P, Rambal N, Niebojewski H, Bedecarrats T, Vinet M, Dumur E and Filippone M 2023 Nat. Nanotechnol. 1-6 [30] Lin T, Gu S S, Xu Y-Q, Jiang S L, Wang N, Wang B C, Li H O, Cao G and Guo G P 2022 Appl. Phys. Lett. 121 184004) [31] van Woerkom D J, Scarlino P, Ungerer J H, Müller C, Koski J V, Landig A J, Reichl C, Wegscheider W, Ihn T, Ensslin K and Wallraff A 2018 Phys. Rev. X 8 041018 [32] Borjans F, Croot X G, Mi X, Gullans M J and Petta J R 2020 Nature 577 195 [33] Wang B, Lin T, Li H, Gu S, Chen M, Guo G, Jiang H, Hu X, Cao G and Guo G 2021 Science Bulletin 66 332 [34] Koski J V, Landig A J, Russ M, Abadillo-Uriel J C, Scarlino P, Kratochwil B, Reichl C, Wegscheider W, Burkard G and Friesen M 2020 Nat. Phys. 16 642 [35] Friesen M, Ghosh J, Eriksson M and Coppersmith S 2017 Nat. Commun. 8 15923 [36] Ha W, Ha S D, Choi M D, Tang Y, Schmitz A E, Levendorf M P, Lee K, Chappell J M, Adams T S and Hulbert D R 2021 Nano Lett. 22 1443 [37] Landig A J, Koski J V, Scarlino P, Mendes U, Blais A, Reichl C, Wegscheider W, Wallraff A, Ensslin K and Ihn T 2018 Nature 560 179 [38] Gasser U, Gustavsson S, Küng B, Ensslin K, Ihn T, Driscoll D and Gossard A 2009 Phys. Rev. B 79 035303 [39] Mi X, Cady J V, Zajac D M, Deelman P W and Petta J R 2017 Science 355 156 [40] Scarlino P, van Woerkom D J, Stockklauser A, Koski J V, Collodo M C, Gasparinetti S, Reichl C, Wegscheider W, Ihn T, Ensslin K and Wallraff A 2019 Phys. Rev. Lett. 122 206802 [41] Russ M, Ginzel F and Burkard G 2016 Phys. Rev.B 94 165411 [42] Abadillo-Uriel J, Eriksson M, Coppersmith S and Friesen M 2019 Nat. Commun. 10 5641 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|