Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(5): 053206    DOI: 10.1088/1674-1056/acbc6c
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Magic wavelengths for 6s1/2 → 5d3/2,5/2 transitions of Yb+ ions

Ting Chen(陈婷)1,†, Lei Wu(吴磊)1,†, Ru-Kui Zhang(张儒奎)1, Yong-Bo Tang(唐永波)2, Jun Jiang(蒋军)1,‡, and Chen-Zhong Dong(董晨钟)1
1 Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China;
2 Physics Teaching and Experiment Center, Shenzhen Technology University, Shenzhen 518118, China
Abstract  The wave functions, energy levels and matrix elements of Yb$^{+}$ ions are calculated using the relativistic configuration interaction plus core polarization (RCICP) method. The static and dynamic electric dipole polarizabilities of the ground state and low-lying excited states are determined. Then, the magic wavelengths of the magnetic sublevel 6${\rm s}_{1/2,\, m=1/2} \to 5{\rm d}_{3/2,\, m=\pm 3/2,\,\pm 1/2}$ and 6${\rm s}_{1/2,\, m=1/2}\to 5{\rm d}_{5/2,\, m=\pm 5/2,\, \pm 3/2,\, \pm 1/2}$ transitions in the linearly, right-handed, and left-handed polarized light are further determined. The dependence of the magic wavelengths upon the angle between the direction of magnetic field and the direction of laser polarization is analyzed.
Keywords:  matrix elements      polarizabilities      magic wavelengths      relativistic configuration interaction plus core polarization (RCICP) method  
Received:  04 November 2022      Revised:  12 January 2023      Accepted manuscript online:  16 February 2023
PACS:  31.15.ap (Polarizabilities and other atomic and molecular properties)  
  32.10.Dk (Electric and magnetic moments, polarizabilities)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1602500), the National Natural Science Foundation of China (Grant Nos. 12174316 and 12174268), the Young Teachers Scientific Research Ability Promotion Plan of Northwest Normal University (Grant No. NWNU-LKQN2020-10), the Innovative Fundamental Research Group Project of Gansu Province, China (Grant No. 20JR5RA541), and the Project of the Educational Commission of Guangdong Province of China (Grant No. 2020KTSCX124).
Corresponding Authors:  Jun Jiang     E-mail:  phyjiang@yeah.net

Cite this article: 

Ting Chen(陈婷), Lei Wu(吴磊), Ru-Kui Zhang(张儒奎), Yong-Bo Tang(唐永波), Jun Jiang(蒋军), and Chen-Zhong Dong(董晨钟) Magic wavelengths for 6s1/2 → 5d3/2,5/2 transitions of Yb+ ions 2023 Chin. Phys. B 32 053206

[1] Katori H, Ido T and Gonokami M K 1999 J. Phys. Soc. Jpn. 68 2479
[2] Ye J, Vernooy D W and Kimble H J 1999 Phys. Rev. Lett. 83 4987
[3] Takamoto M and Katori H 2003 Phys. Rev. Lett. 91 223001
[4] Quinn T 2005 Metrologia 42 E01
[5] Wu X M, Li C B, Tang Y B and Shi T Y 2016 Chin. Phys. B 25 093101
[6] Angstmann E J, Dzuba V A and Flambaum V V 2006 Phys. Rev. Lett. 97 040802
[7] Chou C W, Hume D B, Koelemeij J C, Wineland D J and Rosenband T 2010 Phys. Rev. Lett. 104 070802
[8] Huntemann N, Sanner C, Lipphardt B, Tamm C and Peik E 2016 Phys. Rev. Lett. 116 063001
[9] Huntemann N, Okhapkin M, Lipphardt B, Weyers S, Tamm C and Peik E 2012 Phys. Rev. Lett. 108 090801
[10] Gill P, Barwood G P, Klein H A, Huang G, Webster S A, Blythe P J, Hosaka K, Lea S N and Margolis H S 2003 IEEE Meas. Sci. Technol. 14 1174
[11] Peik E, Lipphardt B, Schnatz H, Schneider T, Tamm C and Karshenboim S G 2004 Phys. Rev. Lett. 93 170801
[12] Tamm C, Weyers S, Lipphardt B and Peik E 2009 Phys. Rev. A 80 043403
[13] Peik E, Schneider T and Tamm C 2006 J. Phys. B 39 145
[14] Yu N and Maleki L 2000 Phys. Rev. A 61 022507
[15] Taylor P, Roberts M, Gateva-Kostova S V, Clarke R B M, Barwood G P, Rowley W R C and Gill P 1997 Phys. Rev. A 56 2699
[16] Tamm C, Lipphardt B, Schnatz H, Wynands R, Weyers S, Schneider T and Peik E 2007 IEEE Trans. Instrum. Mes. 56 601
[17] Ding L Y, Zhang Q X, Zhu C C, Wang Y X, Zhang X and Zhang W 2021 Sci. Sin.-Phys. Mech. Astron. 51 074206
[18] Sahoo B K and Das B P 2011 Phys. Rev. A 84 010502
[19] Flambaum V V, Geddes A J and Viatkina A V 2018 Phys. Rev. A 97 032510
[20] Counts I, Hur J, Diana P L, Aude C, Jeon H, Leung C, Berengut J C, Geddes A, Kawasaki A, Jhe W and Vuletic V 2020 Phys. Rev. Lett. 125 123002
[21] Dzuba V A, Flambaum V V, Safronova M S, Porsev S G, Pruttivarasin T, Hohensee M A and Häffner H 2016 Nat. Phys. 12 465
[22] Monroe C, Campbell W C, Duan L M, Gong Z X, Gorshkov A V, Hess P W, Islam R, Kim K, Linke N M, Pagano G, Richerme P, Senko C and Yao N Y 2021 Rev. Mod. Phys. 93 025001
[23] Porsev S G, Safronova M S and Kozlov M G 2012 Phys. Rev. A 86 022504
[24] Jiang J, Mitroy J, Cheng Y J and Bromley M W J 2016 Phys. Rev. A 94 062514
[25] Grant I P 1989 Relativistic, Quantum Electrodynamic and Weak Interaction Effects in Atoms (New York: AIP) p. 235
[26] Grant I P 2007 Relativistic Quantum Theory of Atoms and Molecules: Theory and Computation (New York: Springer) p. 797
[27] Roy A, De S, Arora B and Sahoo B K 2017 J. Phys. B 50 205201
[28] Kien L F, Schneeweiss P and Rauschenbeutel A 2013 Eur. Phys. J. D 67 92
[29] Manakov N L, Ovsiannikov V D and Rapoport L P 1986 Phys. Rep. 141 320
[30] Beloy K 2009 "Theory of the ac Stark Effect on the Atomic Hyperfine Structure and Applications to Microwave Atomic Clocks", Ph.D thesis (Reno: University of Nevada)
[31] Mitroy J, Griffin D C, Norcross D W and Pindzola M S 1988 Phys. Rev. A 38 3339
[32] Marinescu M, Sadeghpour H R and Dalgarno A 1994 Phys. Rev. A 49 5103
[33] Hafner P and Schwarz W H E 1978 J. Phys. B 11 217
[34] Kolb D, Johnson W R and Shorer P 1982 Phys. Rev. A 26 19
[35] Safronova U I and Safronova M S 2009 Phys. Rev. A 79 022512
[36] Biémont E, Dutrieux J F, Martin I and Quinet P 1998 J. Phys. B 31 3321
[37] Olmschenk S, Younge K C, Moehring D L, Matsukevich D N, Maunz P and Monroe C 2007 Phys. Rev. A 76 052314
[38] Olmschenk S, Hayes D, Matsukevich D N, Maunz P, Moehring D L, Younge K C and Monroe C 2009 Phys. Rev. A 80 022502
[39] Pinnington E H, Berends R W and Ji Q 1994 Phys. Rev. A 50 2758
[40] Kramida A 2013 Fusion. Sci. Technol. 63 313
[41] Jiang J, Li X J, Wang X, Dong C Z and Wu Z W 2020 Phys. Rev. A 102 042823
[42] Migdalek J 1982 J. Quantum Spectrosc. Radiat. Transfer 28 61
[43] Lea S N, Webster S A and Barwood G P 2006 Proceedings of the 20th European Frequency and Time Forum (EFTF), March 27-30, PTB Braunschweig, Germany, p. 302
[44] Schnei K.der T, Peik E and Tamm C 2005 Phys. Rev. Lett. 94 230801
[45] Jiang J, Jiang L, Wang X, Zhang D H, Xie L Y and Dong C Z 2017 Phys. Rev. A 96 042503
[1] Calculations of dynamic multipolar polarizabilities of the Cd clock transition levels
Mi Zhou(周密) and Li-Yan Tang(唐丽艳). Chin. Phys. B, 2021, 30(8): 083102.
[2] Charge disturbance/excitation in the Raman virtual state revealed by ROA signal: A case study of pinane
Ziqi Zhu(祝子祺), Peijie Wang(王培杰), and Guozhen Wu(吴国祯). Chin. Phys. B, 2021, 30(6): 063101.
[3] Calculations of atomic polarizability for beryllium using MCDHF method
Hui Dong(董辉), Jun Jiang(蒋军), Zhongwen Wu(武中文), Chenzhong Dong(董晨钟), and Gediminas Gaigalas. Chin. Phys. B, 2021, 30(4): 043103.
[4] Determination of static dipole polarizabilities of Yb atom
Zhi-Ming Tang(唐志明), Yan-Mei Yu(于艳梅), Chen-Zhong Dong(董晨钟). Chin. Phys. B, 2018, 27(6): 063101.
[5] Structure, stability, catalytic activity, and polarizabilities of small iridium clusters
Francisco E Jorge, José R da Costa Venâncio. Chin. Phys. B, 2018, 27(6): 063102.
[6] Dipole (hyper) polarizabilities of neutral silver clusters
Francisco E Jorge, Luiz G M de Macedo. Chin. Phys. B, 2016, 25(12): 123102.
[7] Calculations of the dynamic dipole polarizabilities for the Li+ ion
Yong-Hui Zhang(张永慧), Li-Yan Tang(唐丽艳), Xian-Zhou Zhang(张现周), Ting-Yun Shi(史庭云). Chin. Phys. B, 2016, 25(10): 103101.
[8] Calculations on polarization properties of alkali metal atoms using Dirac-Fock plus core polarization method
Tang Yong-Bo (唐永波), Li Cheng-Bin (李承斌), Qiao Hao-Xue (乔豪学). Chin. Phys. B, 2014, 23(6): 063101.
[9] Rotation and vibration of diatomic molecule oscillator with hyperbolic potential function
Lu Jun (陆军), Qian Hui-Xian (钱卉仙), Li Liang-Mei (李良梅), Liu Feng-Ling (柳凤伶). Chin. Phys. B, 2005, 14(12): 2402-2406.
[10] Analytical formulae and recurrence relations of bound-continuous transition matrix element for Coulomb wavefunctions
Chen Chang-Yuan (陈昌远), Sun Dong-Sheng (孙东升), Lu Fa-Lin (陆法林). Chin. Phys. B, 2005, 14(1): 37-41.
[11] GENERAL FORMULA AND RECURRENCE FORMULA FOR RADIAL MATRIX ELEMENTS OF N-DIMENSIONAL ISOTROPIC HARMONIC OSCILLATOR
Chen Chang-yuan (陈昌远). Chin. Phys. B, 2000, 9(10): 731-736.
No Suggested Reading articles found!