|
|
Preparation of entangled W states based on the cavity QED system |
Ke Li(李可)1,† and Jun-Long Zhao(赵军龙)2 |
1 Department of Physics, Shanghai Second Polytechnic University, Shanghai 201209, China; 2 Quantum Information Research Center, Shangrao Normal University, Shangrao 334001, China |
|
|
Abstract We present a qubit-loss-free (QLF) fusion scheme for generating large-scale atom W states in cavity quantum electrodynamics (QED) system. Compared to the most current fusion schemes which are conditioned on the case where one particle can be extracted from each initial W state to the fusion process, our scheme will access one or two particles from each W state. Based on the atom-cavity-field detuned interaction, three $|W\rangle_{n+m+t}$ states can be generated from the $|W\rangle_n$, $|W\rangle_m$, and $|W\rangle_t$ states with the help of two auxiliary atoms, and three $|W\rangle_{n+m+t+q}$ states can be generated from $|W\rangle_n$, $|W\rangle_m$, $|W\rangle_t$, and a $|W\rangle_q$ state with the help of three auxiliary atoms. Comparing the numerical simulations of the resource cost of fusing three small-size W states based on the previous schemes, our fusion scheme seems to be more efficient. This QLF fusion scheme can be generalized to the case of fusing $k$ different or identical particle W states. Furthermore, with no qubit loss, it greatly reduces the number of fusion steps and prepares W states with larger particle numbers.
|
Received: 04 March 2024
Revised: 22 May 2024
Accepted manuscript online: 28 May 2024
|
PACS:
|
03.67.Ac
|
(Quantum algorithms, protocols, and simulations)
|
|
03.67.Hk
|
(Quantum communication)
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
03.67.Bg
|
(Entanglement production and manipulation)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12204311) and the Jiangxi Natural Science Foundation (Grant No. 20224BAB211025). |
Corresponding Authors:
Ke Li
E-mail: like@sspu.edu.cn
|
Cite this article:
Ke Li(李可) and Jun-Long Zhao(赵军龙) Preparation of entangled W states based on the cavity QED system 2024 Chin. Phys. B 33 090306
|
[1] Raussendorf R, Browne D E and Briegel H J 2003 Phys. Rev. A 68 022312 [2] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895 [3] Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H and Zeilinger A 1997 Nature 390 575 [4] Özdemir Ş K, Bartkiewicz K and Liu Y X 2007 Phys. Rev. A 76 042325 [5] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145 [6] Li T C and Yin Z Q 2016 Sci. Bull. 61 163 [7] Dür W 2001 Phys. Rev. A 63 020303 [8] Greenberger D M, Horne M A, Shimony A and Zeilinger A 1990 Am. J. Phys. 58 1131 [9] Briegel H J and Raussendorf R 2001 Phys. Rev. Lett. 86 910 [10] Dür W, Vidal G and Cirac J I 2000 Phys. Rev. A 62 062314 [11] Gräfe M 2014 Nat. Photonics 8 791 [12] Ng H T and Kim K 2014 Opt. Commun. 331 353 [13] Ozaydin F 2014 Phys. Lett. A 378 3161 [14] Yu N, Guo C and Duan R 2014 Phys. Rev. Lett. 112 160401 [15] Murao M, Jonathan DM, Plenio B and Vedral V 1999 Phys. Rev. A 59 156 [16] Shi B S and Tomita A 2002 Phys. Lett. A 296 161 [17] Joo J, Park, Y J, Oh S and Kim J 2003 New J. Phys. 5 136 [18] Anders K and Mohamed B 1998 Phys. Rev. A 58 4394 [19] Bose S, Vedral V and Kninght 1998 Phys. Rev. A 57 822 [20] Liu X S, Long G L, Tong D M and Li F 2002 Phys. Rev. A 65 022304 [21] D’Hondt E and Panangaden P 2006 Quantum Inf. Comput. 6 173 [22] Ozaydin F 2014 Phys. Lett. A 378 3161 [23] Ozaydin F, Altintas A, Yesilyurt C, Bugu S and Erol V 2015 Acta Phys. Pol. A 127 1233 [24] Dag C B and Mustecaplioglu O E 2015 Entropy 18 244 [25] Özdemir Ş K, Matsunaga E, Tashima T, Yamamoto T, Koashi M and Imoto N 2011 New J. Phys. 13 103003 [26] Tashima T, Özdemir Ş K, Yamamoto T, Koashi M and Imoto N 2008 Phys. Rev. A 77 030302 [27] Tashima T, Özdemir Ş K, Yamamoto T, Koashi M and Imoto N 2009 New J. Phys. 11 023024 [28] Zang X P, Yang M, Wu W F, Fang S D and Cao Z L 2014 Indian J. Phys. 88 1141 [29] Zang X P, Yang M, Ozaydin F, Song W and Cao Z L 2016 Opt. Express 24 12293 [30] Yesilyurt C, Bugu S, Ozaydin F, Altintas A, Tame M, Yang L and Özdemir Ş K 2016 J. Opt. Soc. Am. B 33 2313 [31] Tashima T, Kitano T, Özdemir Ş K, Yamamoto T, Koashi M and Imoto N 2010 Phys. Rev. Lett. 105 210503 [32] Ozaydin F, Bugu S, Yesilyurt C, Altintas A A, Tame M and Özdemir Ş K 2014 Phys. Rev. A 89 042311 [33] Yesilyurt C, Bugu S and Ozaydin F 2013 Quantum Inf. Process. 12 2965 [34] Bugu S, Yesilyurt C and Ozaydin F 2013 Phys. Rev. A 87 032331 [35] Zang X P, Yang M, Ozaydin F, Song W and Cao Z L 2015 Sci. Rep. 5 16245 [36] Dikera F, Ozaydinb F and Arika M 2015 Acta Phys. Pol. A 127 1189 [37] Li N, Yang J and Ye L 2015 Quantum Inf. Process. 14 1933 [38] Li K, Chen T T, Mao H B and Wang J Q 2018 Quantum Inf. Process. 17 307 [39] Li K, Kong F Z, Yang M, Yang Q and Cao Z L 2016 Phys. Rev. A 94 062315 [40] Wang M Y, Hao Q Z, Yan F L and Gao T 2018 Laser Phys. Lett. 15 055201 [41] Li K, Chen T T, Mao H B and Wang J Q 2019 Quantum Inf. Process. 18 273 [42] Ding C Y, Kong F Z, Yang M, Yang Q and Cao Z L 2018 Quantum Inf. Process. 17 124 [43] Guo G P, Li C F, Li J and Guo G C 2002 Phys. Rev. A 65 042102 [44] Alexandre B, Grimsmo A L, Girvin S M and Andreas W 2021 Rev. Mod. Phys. 93 25005 [45] Zheng S B and Guo G C 2000 Phys. Rev. Lett. 85 2392 [46] Yang M and Cao Z L 2006 Phys. A 366 243 [47] Brune M, Hagley E, Dreyer J, Maitre X, Maali A, Wunderlich C, Raimond J M and Haroche S 1996 Phys. Rev. Lett. 77 4887 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|