Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(9): 090306    DOI: 10.1088/1674-1056/ad50bf
GENERAL Prev   Next  

Preparation of entangled W states based on the cavity QED system

Ke Li(李可)1,† and Jun-Long Zhao(赵军龙)2
1 Department of Physics, Shanghai Second Polytechnic University, Shanghai 201209, China;
2 Quantum Information Research Center, Shangrao Normal University, Shangrao 334001, China
Abstract  We present a qubit-loss-free (QLF) fusion scheme for generating large-scale atom W states in cavity quantum electrodynamics (QED) system. Compared to the most current fusion schemes which are conditioned on the case where one particle can be extracted from each initial W state to the fusion process, our scheme will access one or two particles from each W state. Based on the atom-cavity-field detuned interaction, three $|W\rangle_{n+m+t}$ states can be generated from the $|W\rangle_n$, $|W\rangle_m$, and $|W\rangle_t$ states with the help of two auxiliary atoms, and three $|W\rangle_{n+m+t+q}$ states can be generated from $|W\rangle_n$, $|W\rangle_m$, $|W\rangle_t$, and a $|W\rangle_q$ state with the help of three auxiliary atoms. Comparing the numerical simulations of the resource cost of fusing three small-size W states based on the previous schemes, our fusion scheme seems to be more efficient. This QLF fusion scheme can be generalized to the case of fusing $k$ different or identical particle W states. Furthermore, with no qubit loss, it greatly reduces the number of fusion steps and prepares W states with larger particle numbers.
Keywords:  W state      detuned interaction      state fusion      cavity quantum electrodynamics  
Received:  04 March 2024      Revised:  22 May 2024      Accepted manuscript online:  28 May 2024
PACS:  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  03.67.Hk (Quantum communication)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Bg (Entanglement production and manipulation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12204311) and the Jiangxi Natural Science Foundation (Grant No. 20224BAB211025).
Corresponding Authors:  Ke Li     E-mail:  like@sspu.edu.cn

Cite this article: 

Ke Li(李可) and Jun-Long Zhao(赵军龙) Preparation of entangled W states based on the cavity QED system 2024 Chin. Phys. B 33 090306

[1] Raussendorf R, Browne D E and Briegel H J 2003 Phys. Rev. A 68 022312
[2] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[3] Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H and Zeilinger A 1997 Nature 390 575
[4] Özdemir Ş K, Bartkiewicz K and Liu Y X 2007 Phys. Rev. A 76 042325
[5] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
[6] Li T C and Yin Z Q 2016 Sci. Bull. 61 163
[7] Dür W 2001 Phys. Rev. A 63 020303
[8] Greenberger D M, Horne M A, Shimony A and Zeilinger A 1990 Am. J. Phys. 58 1131
[9] Briegel H J and Raussendorf R 2001 Phys. Rev. Lett. 86 910
[10] Dür W, Vidal G and Cirac J I 2000 Phys. Rev. A 62 062314
[11] Gräfe M 2014 Nat. Photonics 8 791
[12] Ng H T and Kim K 2014 Opt. Commun. 331 353
[13] Ozaydin F 2014 Phys. Lett. A 378 3161
[14] Yu N, Guo C and Duan R 2014 Phys. Rev. Lett. 112 160401
[15] Murao M, Jonathan DM, Plenio B and Vedral V 1999 Phys. Rev. A 59 156
[16] Shi B S and Tomita A 2002 Phys. Lett. A 296 161
[17] Joo J, Park, Y J, Oh S and Kim J 2003 New J. Phys. 5 136
[18] Anders K and Mohamed B 1998 Phys. Rev. A 58 4394
[19] Bose S, Vedral V and Kninght 1998 Phys. Rev. A 57 822
[20] Liu X S, Long G L, Tong D M and Li F 2002 Phys. Rev. A 65 022304
[21] D’Hondt E and Panangaden P 2006 Quantum Inf. Comput. 6 173
[22] Ozaydin F 2014 Phys. Lett. A 378 3161
[23] Ozaydin F, Altintas A, Yesilyurt C, Bugu S and Erol V 2015 Acta Phys. Pol. A 127 1233
[24] Dag C B and Mustecaplioglu O E 2015 Entropy 18 244
[25] Özdemir Ş K, Matsunaga E, Tashima T, Yamamoto T, Koashi M and Imoto N 2011 New J. Phys. 13 103003
[26] Tashima T, Özdemir Ş K, Yamamoto T, Koashi M and Imoto N 2008 Phys. Rev. A 77 030302
[27] Tashima T, Özdemir Ş K, Yamamoto T, Koashi M and Imoto N 2009 New J. Phys. 11 023024
[28] Zang X P, Yang M, Wu W F, Fang S D and Cao Z L 2014 Indian J. Phys. 88 1141
[29] Zang X P, Yang M, Ozaydin F, Song W and Cao Z L 2016 Opt. Express 24 12293
[30] Yesilyurt C, Bugu S, Ozaydin F, Altintas A, Tame M, Yang L and Özdemir Ş K 2016 J. Opt. Soc. Am. B 33 2313
[31] Tashima T, Kitano T, Özdemir Ş K, Yamamoto T, Koashi M and Imoto N 2010 Phys. Rev. Lett. 105 210503
[32] Ozaydin F, Bugu S, Yesilyurt C, Altintas A A, Tame M and Özdemir Ş K 2014 Phys. Rev. A 89 042311
[33] Yesilyurt C, Bugu S and Ozaydin F 2013 Quantum Inf. Process. 12 2965
[34] Bugu S, Yesilyurt C and Ozaydin F 2013 Phys. Rev. A 87 032331
[35] Zang X P, Yang M, Ozaydin F, Song W and Cao Z L 2015 Sci. Rep. 5 16245
[36] Dikera F, Ozaydinb F and Arika M 2015 Acta Phys. Pol. A 127 1189
[37] Li N, Yang J and Ye L 2015 Quantum Inf. Process. 14 1933
[38] Li K, Chen T T, Mao H B and Wang J Q 2018 Quantum Inf. Process. 17 307
[39] Li K, Kong F Z, Yang M, Yang Q and Cao Z L 2016 Phys. Rev. A 94 062315
[40] Wang M Y, Hao Q Z, Yan F L and Gao T 2018 Laser Phys. Lett. 15 055201
[41] Li K, Chen T T, Mao H B and Wang J Q 2019 Quantum Inf. Process. 18 273
[42] Ding C Y, Kong F Z, Yang M, Yang Q and Cao Z L 2018 Quantum Inf. Process. 17 124
[43] Guo G P, Li C F, Li J and Guo G C 2002 Phys. Rev. A 65 042102
[44] Alexandre B, Grimsmo A L, Girvin S M and Andreas W 2021 Rev. Mod. Phys. 93 25005
[45] Zheng S B and Guo G C 2000 Phys. Rev. Lett. 85 2392
[46] Yang M and Cao Z L 2006 Phys. A 366 243
[47] Brune M, Hagley E, Dreyer J, Maitre X, Maali A, Wunderlich C, Raimond J M and Haroche S 1996 Phys. Rev. Lett. 77 4887
[1] Preparation of squeezed light with low average photon number based on dynamic Casimir effect
Na Li(李娜), Zi-Jian Lin(林资鉴), Mei-Song Wei(韦梅松), Ming-Jie Liao(廖明杰),Jing-Ping Xu(许静平), San-Huang Ke(柯三黄), and Ya-Ping Yang(羊亚平). Chin. Phys. B, 2023, 32(12): 120301.
[2] Perfect photon absorption based on the optical parametric process
Yang Zhang(张旸), Yu-Bo Ma(马宇波), Xin-Ping Li(李新平), Yu Guo(郭钰), and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(6): 064203.
[3] Reversible waveform conversion between microwave and optical fields in a hybrid opto-electromechanical system
Li-Guo Qin(秦立国), Zhong-Yang Wang(王中阳), Jie-Hui Huang(黄接辉), Li-Jun Tian(田立君), and Shang-Qing Gong(龚尚庆). Chin. Phys. B, 2021, 30(6): 068502.
[4] Absorption interferometer of two-sided cavity
Miao-Di Guo(郭苗迪) and Hong-Mei Li(李红梅). Chin. Phys. B, 2021, 30(5): 054202.
[5] Fast generation of W state via superadiabatic-based shortcut in circuit quantum electrodynamics
Xue-Mei Wang(王雪梅), An-Qi Zhang(张安琪), Peng Xu(许鹏, and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2021, 30(3): 030307.
[6] Influence of driving ways on measurement of relative phase in a two-atoms cavity system
Daqiang Bao(包大强), Jingping Xu(许静平), Yaping Yang(羊亚平). Chin. Phys. B, 2020, 29(4): 043702.
[7] Qubits based on semiconductor quantum dots
Xin Zhang(张鑫), Hai-Ou Li(李海欧), Ke Wang(王柯), Gang Cao(曹刚), Ming Xiao(肖明), Guo-Ping Guo(郭国平). Chin. Phys. B, 2018, 27(2): 020305.
[8] Dynamic properties of atomic collective decay in cavity quantum electrodynamics
Yu-Feng Han(韩玉峰), Cheng-Jie Zhu(朱成杰), Xian-Shan Huang(黄仙山), Ya-Ping Yang(羊亚平). Chin. Phys. B, 2018, 27(12): 124206.
[9] Controllable double electromagnetically induced transparency in a closed four-level-loop cavity–atom system
Miao-Di Guo(郭苗迪), Xue-Mei Su(苏雪梅). Chin. Phys. B, 2017, 26(7): 074207.
[10] Multi-hop teleportation based on W state and EPR pairs
Hai-Tao Zhan(占海涛), Xu-Tao Yu(余旭涛), Pei-Ying Xiong(熊佩颖), Zai-Chen Zhang(张在琛). Chin. Phys. B, 2016, 25(5): 050305.
[11] Effects of magnetic field on photon-induced quantum transport in a single dot-cavity system
Nzar Rauf Abdullah, Aziz H Fatah, Jabar M A Fatah. Chin. Phys. B, 2016, 25(11): 114206.
[12] On the correspondence between three nodes W states in quantum network theory and the oriented links in knot theory
Gu Zhi-Yu (顾之雨), Qian Shang-Wu (钱尚武). Chin. Phys. B, 2015, 24(4): 040301.
[13] Measurement-induced nonlocality in the W and Greenberger-Horne-Zeilinger superposition states
Lin Qin (林秦), Bai Yan-Kui (白彦魁), Ye Ming-Yong (叶明勇), Lin Xiu-Min (林秀敏). Chin. Phys. B, 2015, 24(3): 030304.
[14] Time-bin-encoding-based remote states generation of nitrogen-vacancy centers through noisy channels
Su Shi-Lei (苏石磊), Chen Li (陈丽), Guo Qi (郭奇), Wang Hong-Fu (王洪福), Zhu Ai-Dong (朱爱东), Zhang Shou (张寿). Chin. Phys. B, 2015, 24(2): 020305.
[15] Entanglement dynamics of a three-qubit system with different interatomic distances
Feng Ling-Juan (封玲娟), Zhang Ying-Jie (张英杰), Zhang Lu (张路), Xia Yun-Jie (夏云杰). Chin. Phys. B, 2015, 24(11): 110305.
No Suggested Reading articles found!