Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(5): 054202    DOI: 10.1088/1674-1056/abdea4

Absorption interferometer of two-sided cavity

Miao-Di Guo(郭苗迪)1,† and Hong-Mei Li(李红梅)2
1 School of Sciences, Xi'an Technological University, Xi'an 710021, China;
2 College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
Abstract  We propose a scheme in which an arbitrary incidence can be made perfectly reflected/transmitted with a phase modulator. We analyze the variation of intracavity field as well as output field with closed-loop phase φ1 of the control fields and relative phase φ2 of the probe beams. With two phases, medium absorption and light interference can be controlled so that photon escape from the cavity can be manipulated, thus an intensity switching based on phase modulation can be realized. And the condition for perfect transmitter or reflector is obtained. Then based on the transmission/reflection analysis, the total absorption of this system can be investigated. Therefore our scheme can be used as an absorption interferometer to explore the optical absorption in some complicated system. The state delay of the output light intensity, which is dependent on φ1 or φ2, can be applied in the realization of quantum phase gate and subtle wave filter. And based on this scheme, we implement the state transfer between perfect transmitter/reflector and non-perfect coherent photon absorber via relative-phase modulation.
Keywords:  cavity quantum electrodynamics (QED)      optical switching      quantum interference  
Received:  16 November 2020      Revised:  06 January 2021      Accepted manuscript online:  22 January 2021
PACS:  42.50.-p (Quantum optics)  
  42.65.Pc (Optical bistability, multistability, and switching, including local field effects)  
  32.80.Qk (Coherent control of atomic interactions with photons)  
Fund: Project support by the Natural Science Foundation of Shaanxi Provincial Department of Education, China (Grant No. 20JK0682) and the National Natural Science Foundation of China (Grant No. 11174109).
Corresponding Authors:  Miao-Di Guo     E-mail:

Cite this article: 

Miao-Di Guo(郭苗迪) and Hong-Mei Li(李红梅) Absorption interferometer of two-sided cavity 2021 Chin. Phys. B 30 054202

[1] Lukin M D, Fleischhauer M, Scully M O and Velichansky V L 1998 Opt. Lett. 23 295
[2] Wu H, Gea-Banacloche J and Xiao M 2008 Phys. Rev. Lett. 100 173602
[3] Mücke M, Figueroa E, Bochmann J, Hahn C, Murr K, Ritter S, Villas-Boas C J and Remp G 2010 Nature 465 755
[4] Nielsen A E B and Kerckhoff J 2011 Phys. Rev. A 84 043821
[5] Xu J, Al-Amri M, Yang Y, Zhu S and Zubairy M S 2012 Phys. Rev. A 86 033828
[6] Zou B, Tan Z, Musa M and Zhu Y 2014 Phys. Rev. A 89 023806
[7] Gao Y, Ren Y, Yu D and Qian J 2019 Phys. Rev. A 100 033823
[8] Walther V, Grünwald P and Pohl T 2020 Phys. Rev. Lett. 125 173601
[9] Cano D 2020 Phys. Rev. A 102 043103
[10] Korsunsky E A, Leinfellner N, Huss A, Baluschev S and Windholz L 1999 Phys. Rev. A 59 2302
[11] Xue Y, Wang G, Wu J, Xu W, Wang H, Gao J and Babin S A 2004 Phys. Lett. A 324 388
[12] Deng L and Payne M G 2005 Phys. Rev. A 71 011803
[13] Abi-salloum T, Davis J P, LehmanC, Elliott E and Narducci F A 2007 J. Mod. Opt. 54 2459
[14] Guo M and Su X 2017 Chin. Phys. B 26 074207
[15] Xiao Y, Klein M, Hohensee M, Jiang L, Phillips D F, Lukin M D and Walsworth R L 2008 Phys. Rev. Lett. 101 043601
[16] Wang F, Hu X, Shi W and Zhu Y 2010 Phys. Rev. A 81 033836
[17] Hashmi F A and Bouchene M A 2009 Phys. Rev. A 79 025401
[18] Basler C, Reininger K, Meinert F, Ghosh P N and Helm H 2013 Phys. Rev. A 87 013430
[19] Zhu C, Deng L and Hagley E W 2014 Phys. Rev. A 90 063841
[20] Li R B, Zhu C J, Deng L and Hagley E W 2015 Phys. Rev. A 92 043838
[21] Chong Y D, Ge L, Cao H and Stone A D 2010 Phys. Rev. Lett. 105 053901
[22] Agarwal G S and Zhu Y 2015 Phys. Rev. A 92 023824
[23] Wang L, Di K, Zhu Y and Agarwal G S 2017 Phys. Rev. A 95 013841
[24] Sawan R and Rangwala S A 2016 Phys. Rev. A 93 023806
[25] Wu J, Gao J, Xu J, Silvestri L, Artoni M, La Rocca G C and Bassani F 2005 Phys. Rev. Lett. 95 057401
[26] Zou B and Zhu Y 2013 Phys. Rev. A 87 053802
[27] Agarwal G S, 2013 Quantum Optics (New York: Cambridge University Press) pp. 307-347
[28] Wan W, Chong Y, Ge L, Noh H, Stone A D and Cao H 2011 Science 331 889
[29] Danieli C and Mithun T 2020 Phys. Rev. Research 2 013054
[1] Multiplexing technology based on SQUID for readout of superconducting transition-edge sensor arrays
Xinyu Wu(吴歆宇), Qing Yu(余晴), Yongcheng He(何永成), Jianshe Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2022, 31(10): 108501.
[2] Chirp-dependent ionization of hydrogen atoms in the presence of super-intense laser pulses
Fengzheng Zhu(朱风筝), Xiaoyu Liu(刘晓煜), Yue Guo(郭月), Ningyue Wang(王宁月), Liguang Jiao(焦利光), and Aihua Liu(刘爱华). Chin. Phys. B, 2021, 30(9): 094209.
[3] Stable quantum interference enabled by coexisting detuned and resonant STIRAPs
Dan Liu(刘丹), Yichun Gao(高益淳), Jianqin Xu(许建琴), and Jing Qian(钱静). Chin. Phys. B, 2021, 30(5): 053701.
[4] Unconventional photon blockade in a three-mode system with double second-order nonlinear coupling
Hong-Yu Lin(林宏宇), Hui Yang(杨慧), and Zhi-Hai Yao(姚治海). Chin. Phys. B, 2020, 29(12): 120304.
[5] Optimization of pick-up coils for weakly damped SQUID gradiometers
Kang Yang(杨康), Jialei Wang(王佳磊), Xiangyan Kong(孔祥燕), Ruihu Yang(杨瑞虎), Hua Chen(陈桦). Chin. Phys. B, 2018, 27(5): 050701.
[6] Performance study of aluminum shielded room for ultra-low-field magnetic resonance imaging based on SQUID: Simulations and experiments
Bo Li(李波), Hui Dong(董慧), Xiao-Lei Huang(黄小磊), Yang Qiu(邱阳), Quan Tao(陶泉), Jian-Ming Zhu(朱建明). Chin. Phys. B, 2018, 27(2): 020701.
[7] Dynamic properties of atomic collective decay in cavity quantum electrodynamics
Yu-Feng Han(韩玉峰), Cheng-Jie Zhu(朱成杰), Xian-Shan Huang(黄仙山), Ya-Ping Yang(羊亚平). Chin. Phys. B, 2018, 27(12): 124206.
[8] Modulation depth of series SQUIDs modified by Josephson junction area
Jie Liu(刘杰), He Gao(高鹤), Gang Li(李刚), Zheng Wei Li(李正伟), Kamal Ahmada, Zhang Ying Shan(张颖珊), Jian She Liu(刘建设), Wei Chen(陈炜). Chin. Phys. B, 2017, 26(9): 098501.
[9] Quantum interference between heralded single photon stateand coherent state
Lei Yang(杨磊), Xiaoxin Ma(马晓欣), Xiaoying Li(李小英). Chin. Phys. B, 2017, 26(7): 074206.
[10] Macroscopic resonant tunneling in an rf-SQUID flux qubit under a single-cycle sinusoidal driving
Jianxin Shi(史建新), Weiwei Xu(许伟伟), Guozhu Sun(孙国柱), Jian Chen(陈健), Lin Kang(康琳), Peiheng Wu(吴培亨). Chin. Phys. B, 2017, 26(4): 047402.
[11] Ballistic transport and quantum interference in InSb nanowire devices
Sen Li(李森), Guang-Yao Huang(黄光耀), Jing-Kun Guo(郭景琨), Ning Kang(康宁), Philippe Caroff, Hong-Qi Xu(徐洪起). Chin. Phys. B, 2017, 26(2): 027305.
[12] Tunable thermoelectric properties in bended graphene nanoribbons
Chang-Ning Pan(潘长宁), Jun He(何军), Mao-Fa Fang(方卯发). Chin. Phys. B, 2016, 25(7): 078102.
[13] Effects of magnetic field on photon-induced quantum transport in a single dot-cavity system
Nzar Rauf Abdullah, Aziz H Fatah, Jabar M A Fatah. Chin. Phys. B, 2016, 25(11): 114206.
[14] Entanglement and non-Markovianity of a multi-level atom decaying in a cavity
Zi-Long Fan(范子龙), Yu-Kun Ren(任玉坤), Hao-Sheng Zeng(曾浩生). Chin. Phys. B, 2016, 25(1): 010303.
[15] Photodetachment of H- near a hard wall with arbitrary laser polarization direction
Azmat Iqbal, A. Afaq. Chin. Phys. B, 2015, 24(8): 083201.
No Suggested Reading articles found!