Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(8): 084207    DOI: 10.1088/1674-1056/abfbd3
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Quantum storage of single photons with unknown arrival time and pulse shapes

Yu You(由玉)1,2, Gong-Wei Lin(林功伟)1,†, Ling-Juan Feng(封玲娟)3, Yue-Ping Niu(钮月萍)1,4,‡, and Shang-Qing Gong(龚尚庆)1,4,§
1 Department of Physics, East China University of Science and Technology, Shanghai 200237, China;
2 School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China;
3 College of Sciences, Shanghai Institute of Technology, Shanghai 201418, China;
4 Shanghai Engineering Research Center of Hierarchical Nanomaterials, Shanghai 200237, China
Abstract  We present a scheme for the quantum storage of single photons using electromagnetically induced transparency (EIT) in a low-finesse optical cavity, assisted by state-selected spontaneous atomic emission. Mediated by the dark mode of cavity EIT, the destructive quantum interference between the cavity input-output channel and state-selected atomic spontaneous emission leads to strong absorption of single photons with unknown arrival time and pulse shapes. We discuss the application of this phenomenon to photon counting using stored light.
Keywords:  quantum information and processing      quantum electrodynamics  
Received:  22 January 2021      Revised:  17 April 2021      Accepted manuscript online:  27 April 2021
PACS:  42.50.Ex (Optical implementations of quantum information processing and transfer)  
  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674094, 11774089, 11874146, 11981260012, and 12034007) and the Shanghai Natural Science Foundation, China (Grant Nos. 18ZR1410500 and 18DZ2252400).
Corresponding Authors:  Gong-Wei Lin, Yue-Ping Niu, Shang-Qing Gong     E-mail:  gwlin@ecust.edu.cn;niuyp@ecust.edu.cn;sqgong@ecust.edu.cn

Cite this article: 

Yu You(由玉), Gong-Wei Lin(林功伟), Ling-Juan Feng(封玲娟), Yue-Ping Niu(钮月萍), and Shang-Qing Gong(龚尚庆) Quantum storage of single photons with unknown arrival time and pulse shapes 2021 Chin. Phys. B 30 084207

[1] Kimble H J 2008 Nature 453 1023
[2] Lukin M D 2003 Rev. Mod. Phys. 75 457
[3] Hammerer K, Sørensen A S and Polzik E S 2010 Rev. Mod. Phys. 82 1041
[4] Specht H P, Nölleke C, Reiserer A, Uphoff M, Figueroa E, Ritter S and Rempe G 2011 Nature 473 190
[5] Boozer A D, Boca A, Miller R, Northup T E and Kimble H J 2007 Phys. Rev. Lett. 98 193601
[6] Fleischhauer M and Lukin M D 2000 Phys. Rev. Lett. 84 5094
[7] Gorshkov A V, Calarco T, Lukin M D and Sørensen A S 2008 Phys. Rev. A 77 043806
[8] Schraft D, Hain M, Lorenz N and Halfmann T 2016 Phys. Rev. Lett. 116 073602
[9] Hsiao Y F, Tsai P J, Chen H S, Lin S X, Hung C C, Lee C H, Chen Y H, Chen Y F, Yu I A and Chen Y C 2018 Phys. Rev. Lett. 120 183602
[10] Deng R J, Yang Z H and Jia X J 2017 Acta Phys. Sin. 66 074201 (in Chinese)
[11] Dudin Y O, Li L and Kuzmich A 2013 Phys. Rev. A 87 031801
[12] Katz O and Firstenberg O 2018 Nat. Commun. 9 2074
[13] Qi Y R, Gao H and Zhang S G 2009 Chin. Phys. Lett. 26 114211
[14] Heinze G, Hubrich C and Halfmann T 2013 Phys. Rev. Lett. 111 033601
[15] Chen L R, Xu Z X, Li P, Wen Y F, Zeng W Q, Wu Y L, Tian L, Li S J and Wang H 2016 Chin. Phys. B 25 024203
[16] Li W, Islam P and Windpassinger P 2020 Phys. Rev. Lett. 125 150501
[17] Vernaz-Gris P, Huang K, Cao M, Sheremet A S and Laurat J 2018 Nat. Commun. 9 363
[18] Wei Y C, Wu B H, Hsiao Y F, Tsai P J and Chen Y C 2020 Phys. Rev. A 102 063720
[19] Peters T, Wang T P, Neumann A, Simeonov L S and Halfmann T 2020 Opt. Express 28 5340
[20] Gouraud B, Maxein D, Nicolas A, Morin and Laurat J 2015 Phys. Rev. Lett. 114 180503
[21] Sayrin C, Clausen C, Albrecht B, Schneeweiss P and Rauschenbeutel A 2015 Optica 2 353
[22] Appel J, Figueroa E, Korystov D, Lobino M and Lvovsky A I 2008 Phys. Rev. Lett. 100 093602
[23] Wang K, Zhang W, Zhou Z Y, Dong M X, Shi S, Liu S L, Ding D S and Shi B S 2017 Chin. Opt. Lett. 15 060201
[24] Eisaman M, André, Massou F, Fleischhauer M, Zibrov A and Lukin M 2005 Nature 438 837
[25] Nicolas A, Veissier L, Giner L, Giacobino E, Maxein D and Laurat J 2014 Nat. Photon. 8 234
[26] Ding D S, Zhou Z Y, Shi B S and Guo G C 2013 Nat. Commun. 97 062318
[27] Wang Y F, Li J F, Zhang S C, Su K Y, Zhou Y R, Liao K Y, Du S W, Yan H and Zhu S L 2019 Nat. Photon. 13 346
[28] Gorshkov A V, André A, Fleischhauer M, Sørensen A S and Lukin M D 2007 Phys. Rev. Lett. 98 123601
[29] Novikova I, Phillips N B and Gorshkov A V 2008 Phys. Rev. A 78 021802
[30] Rowe M A, Kielpinski D, Meyer V, Sackett C A, Itano W M, Monroe C and Wineland D J 2001 Nature 409 791
[31] Dong C H, Fiore V, Kuzyk M and Wang H 2012 Science 338 1609
[32] James D F V and Kwiat P G 2002 Phys. Rev. Lett. 89 183601
[33] Imamoḡlu A 2002 Phys. Rev. Lett. 89 163602
[34] Lin G W, Qi Y H, Lin X M, Niu Y P and Gong S Q 2015 Phys. Rev. A 92 043842
[35] Walls D F and Milburn G J 1994 Quantum Optics (Berlin: Springer-Verlag)
[36] Tian L 2012 Phys. Rev. Lett. 108 153604
[37] Wang Y D and Clerk A A 2012 Phys. Rev. Lett. 108 153603
[38] Duan L M, Kuzmich A and Kimble H J 2003 Phys. Rev. A 67 032305
[39] Duan L M and Kimble H J 2004 Phys. Rev. Lett. 92 127902
[40] Simon J, Tanji H, Thompson J K and Vuletic V 2007 Phys. Rev. Lett. 98 183601
[41] Wu H, Gea-Banacloche J and Xiao M 2008 Phys. Rev. Lett. 100 173602
[1] Realization of the iSWAP-like gate among the superconducting qutrits
Peng Xu(许鹏), Ran Zhang(张然), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(2): 020306.
[2] Atomic structure and collision dynamics with highly charged ions
Xinwen Ma(马新文), Shaofeng Zhang(张少锋), Weiqiang Wen(汶伟强), Zhongkui Huang(黄忠魁), Zhimin Hu(胡智民), Dalong Guo(郭大龙), Junwen Gao(高俊文), Bennaceur Najjari, Shenyue Xu(许慎跃), Shuncheng Yan(闫顺成), Ke Yao(姚科), Ruitian Zhang(张瑞田), Yong Gao(高永), and Xiaolong Zhu(朱小龙). Chin. Phys. B, 2022, 31(9): 093401.
[3] Change-over switch for quantum states transfer with topological channels in a circuit-QED lattice
Liu-Yong Cheng(程留永), Li-Na Zheng(郑黎娜), Ruixiang Wu(吴瑞祥), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(2): 020305.
[4] Perfect photon absorption based on the optical parametric process
Yang Zhang(张旸), Yu-Bo Ma(马宇波), Xin-Ping Li(李新平), Yu Guo(郭钰), and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(6): 064203.
[5] Reversible waveform conversion between microwave and optical fields in a hybrid opto-electromechanical system
Li-Guo Qin(秦立国), Zhong-Yang Wang(王中阳), Jie-Hui Huang(黄接辉), Li-Jun Tian(田立君), and Shang-Qing Gong(龚尚庆). Chin. Phys. B, 2021, 30(6): 068502.
[6] Absorption interferometer of two-sided cavity
Miao-Di Guo(郭苗迪) and Hong-Mei Li(李红梅). Chin. Phys. B, 2021, 30(5): 054202.
[7] Fast generation of W state via superadiabatic-based shortcut in circuit quantum electrodynamics
Xue-Mei Wang(王雪梅), An-Qi Zhang(张安琪), Peng Xu(许鹏, and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2021, 30(3): 030307.
[8] Fano interference and transparency in a waveguide-nanocavity hybrid system with an auxiliary cavity
Yu-Xin Shu(树宇鑫), Xiao-San Ma(马小三), Xian-Shan Huang(黄仙山), Mu-Tian Cheng(程木田), and Jun-Bo Han(韩俊波). Chin. Phys. B, 2021, 30(10): 104204.
[9] Influence of driving ways on measurement of relative phase in a two-atoms cavity system
Daqiang Bao(包大强), Jingping Xu(许静平), Yaping Yang(羊亚平). Chin. Phys. B, 2020, 29(4): 043702.
[10] Effects of the Casimir force on the properties of a hybrid optomechanical system
Yi-Ping Wang(王一平), Zhu-Cheng Zhang(张筑城), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2019, 28(1): 014202.
[11] Qubits based on semiconductor quantum dots
Xin Zhang(张鑫), Hai-Ou Li(李海欧), Ke Wang(王柯), Gang Cao(曹刚), Ming Xiao(肖明), Guo-Ping Guo(郭国平). Chin. Phys. B, 2018, 27(2): 020305.
[12] Possible generation of π-condensation in a free space by collisions between photons and protons
Qi-Ren Zhang(张启仁). Chin. Phys. B, 2018, 27(12): 120306.
[13] Dynamic properties of atomic collective decay in cavity quantum electrodynamics
Yu-Feng Han(韩玉峰), Cheng-Jie Zhu(朱成杰), Xian-Shan Huang(黄仙山), Ya-Ping Yang(羊亚平). Chin. Phys. B, 2018, 27(12): 124206.
[14] Controllable double electromagnetically induced transparency in a closed four-level-loop cavity–atom system
Miao-Di Guo(郭苗迪), Xue-Mei Su(苏雪梅). Chin. Phys. B, 2017, 26(7): 074207.
[15] Experimental simulation of violation of the Wright inequality by coherent light
Feng Zhu(朱锋), Wei Zhang(张巍), Yidong Huang(黄翊东). Chin. Phys. B, 2017, 26(10): 100302.
No Suggested Reading articles found!