Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(2): 020315    DOI: 10.1088/1674-1056/ad1747
RAPID COMMUNICATION Prev   Next  

Remote entangling gate between a quantum dot spin and a transmon qubit mediated by microwave photons

Xing-Yu Zhu(朱行宇)1,2, Le-Tian Zhu(朱乐天)1, Tao Tu(涂涛)1,3,†, and Chuan-Feng Li(李传锋)1,3,‡
1 Key Laboratory of Quantum Information, Chinese Academy of Sciences, University of Science and Technology of China, Hefei 230026, China;
2 School of Mechanical and Electronic Engineering, Suzhou University, Suzhou 234000, China;
3 Hefei National Laboratory, University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230088, China
Abstract  Spin qubits and superconducting qubits are promising candidates for realizing solid-state quantum information processors. Designing a hybrid architecture that combines the advantages of different qubits on the same chip is a highly desirable but challenging goal. Here we propose a hybrid architecture that utilizes a high-impedance SQUID array resonator as a quantum bus, thereby coherently coupling different solid-state qubits. We employ a resonant exchange spin qubit hosted in a triple quantum dot and a superconducting transmon qubit. Since this hybrid system is highly tunable, it can operate in a dispersive regime, where the interaction between the different qubits is mediated by virtual photons. By utilizing such interactions, entangling gate operations between different qubits can be realized in a short time of 30 ns with a fidelity of up to 96.5% under realistic parameter conditions. Further utilizing this interaction, remote entangled state between different qubits can be prepared and is robust to perturbations of various parameters. These results pave the way for exploring efficient fault-tolerant quantum computation on hybrid quantum architecture platforms.
Keywords:  hybrid quantum architectures      circuit quantum electrodynamics      entangling gate  
Received:  21 September 2023      Revised:  21 November 2023      Accepted manuscript online:  20 December 2023
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  42.50.Dv (Quantum state engineering and measurements)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974336 and 12304401), the National Key R&D Program of China (Grant No. 2017YFA0304100), the Key Project of Natural Science Research in Universities of Anhui Province (Grant No. KJ2021A1107), and the Scientific Research Foundation of Suzhou University (Grant Nos. 2020BS006 and 2021XJPT18).
Corresponding Authors:  Tao Tu, Chuan-Feng Li     E-mail:  tutao@ustc.edu.cn;licf@ustc.edu.cn

Cite this article: 

Xing-Yu Zhu(朱行宇), Le-Tian Zhu(朱乐天), Tao Tu(涂涛), and Chuan-Feng Li(李传锋) Remote entangling gate between a quantum dot spin and a transmon qubit mediated by microwave photons 2024 Chin. Phys. B 33 020315

[1] Burkard G, Ladd T D, Nichol J M, Pan A and Petta J R 2023 Rev. Mod. Phys. 95 025003
[2] Krantz P, Kjaergaard M, Yan F, Orlando T P, Gustavsson S and Oliver W D 2019 Appl. Phys. Rev. 6 021318
[3] Yoneda J, Takeda K, Otsuka T, Nakajima T, Delbecq M R, Allison G, Honda T, Kodera T, Oda S, Hoshi Y, Usami N, Itoh K M and Tarucha S 2018 Nat. Nanotechnol. 13 102
[4] Stano P and Loss D 2022 Nat. Rev. Phys. 4 672
[5] Veldhorst M, Eenink H G J, Yang C H and Dzurak A S 2017 Nat. Commun. 8 1766
[6] Li R, Petit L, Franke D P, Dehollain J P, Helsen J, Steudtner M, Thomas N K, Yoscovits Z R, Singh K J, Wehner S, Vandersypen L M K, Clarke J S and Veldhorst M 2018 Sci. Adv. 4 eaar3960
[7] Barends R, Kelly J, Megrant A, Veitia A, Sank D, Jeffrey E, White T C, Mutus J, Fowler A G, Campbell B, Chen Y, Chen Z, Chiaro B, Dunsworth A, Neill C, OMalley P, Roushan P, Vainsencher A, Wenner J, Korotkov A N, Cleland A N and Martinis J M 2014 Nature 508 500
[8] Sheldon S, Magesan E, Chow J M and Gambetta J M 2016 Phys. Rev. A 93 060302
[9] Arute F, Arya K, Babbush R, et al. 2019 Nature 574 505
[10] Blais A, Grimsmo A L, Girvin S M and Wallraff A 2021 Rev. Mod. Phys. 93 025005
[11] Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M and Schoelkopf R J 2004 Nature 431 162
[12] Blais A, Huang R S, Wallraff A, Girvin S M and Schoelkopf R J 2004 Phys. Rev. A 69 062320
[13] Majer J, Chow J M, Gambetta J M, Koch J, Johnson B R, Schreier J A, Frunzio L, Schuster D I, Houck A A, Wallraff A, Blais A, Devoret M H, Girvin S M and Schoelkopf R J 2007 Nature 449 443
[14] DiCarlo L, Chow J M, Gambetta J M, Bishop L S, Johnson B R, Schuster D I, Majer J, Blais A, Frunzio L, Girvin S M and Schoelkopf R J 2009 Nature 460 240
[15] Mi X, Benito M, Putz S, Zajac D M, Taylor J M, Burkard G and Petta J R 2018 Nature 555 599
[16] Samkharadze N, Zheng G, Kalhor N, Brousse D, Sammak A, Mendes U C, Blais A, Scappucci G and Vandersypen L M K 2018 Science 359 1123
[17] Landig A J, Koski J V, Scarlino P, Mendes U C, Blais A, Reichl C, Wegscheider W, Wallraff A, Ensslin K and Ihn T 2018 Nature 560 179
[18] Borjans F, Croot X G, Mi X, Gullans M J and Petta J R 2020 Nature 577 195
[19] Harvey-Collard P, Dijkema J, Zheng G, Sammak A, Scappucci G and Vandersypen L M K 2022 Phys. Rev. X 12 021026
[20] Medford J, Beil J, Taylor J M, Rashba E I, Lu H, Gossard A C and Marcus C M 2013 Phys. Rev. Lett. 111 050501
[21] Taylor J M, Srinivasa V and Medford J 2013 Phys. Rev. Lett. 111 050502
[22] Koch J, Yu T M, Gambetta J, Houck A A, Schuster D I, Majer J, Blais A, Devoret M H, Girvin S M and Schoelkopf R J 2007 Phys. Rev. A 76 042319
[23] Stockklauser A, Scarlino P, Koski J V, Gasparinetti S, Andersen C K, Reichl C, Wegscheider W, Ihn T, Ensslin K and Wallraff A 2017 Phys. Rev. X 7 011030
[24] Landig A J, Koski J V, Scarlino P, Muller C, Abadillo-Uriel J C, Kratochwil B, Reichl C, Wegscheider W, Coppersmith S N, Friesen M, Wallraff A, Ihn T and Ensslin K 2019 Nat. Commun. 10 5037
[25] Petta J R, Johnson A C, Taylor J M, Laird E A, Yacoby A, Lukin M D, Marcus C M, Hanson M P and Gossard A C 2005 Science 309 2180
[26] Lin Z R, Guo G P, Tu T, Zhu F Y and Guo G C 2008 Phys. Rev. Lett. 101 230501
[27] Zhu X Y, Tu T, Guo A L, Guo G C and Li C F 2021 Phys. Rev. A 104 032409
[28] Zhu X Y, Tu T, Guo G C and Li C F 2023 Phys. Rev. A 107 033708
[29] Schrieffer J R and Wolff P A 1966 Phys. Rev. 149 491
[30] Eng K, Ladd T D, Smith A, Borselli M G, Kiselev A A, Fong B H, Holabird K S, Hazard T M, Huang B, Deelman P W, Milosavljevic I, Schmitz A E, Ross R S, Gyure M F and Hunter A T 2015 Sci. Adv. 1 e150021
[31] Blumoff J Z, Pan A S, Keating T E, Andrews R W, Barnes D W, Brecht T L, Croke E T, Euliss L E, Fast J A, Jackson C A C, Jones A M, Kerckhoff J, Lanza R K, Raach K, Thomas B J, Velunta R, Weinstein A J, Ladd T D, Eng K, Borselli M G, Hunter A T and Rakher M T 2022 PRX Quantum 3 010352
[32] Wei K X, Lauer I, Srinivasan S, Sundaresan N, McClure D T, Toyli D, McKay D C, Gambetta J M and Sheldon S 2020 Phys. Rev. A 101 032343
[33] Nielsen M A 2002 Phys. Lett. A 303 249
[34] Gilchrist A, Langford N K and Nielsen M A 2005 Phys. Rev. A 71 062310
[35] Dur W and Briegel H J 2007 Rep. Prog. Phys. 70 1381
[36] Nickerson N H, Fitzsimons J F and Benjamin S C 2014 Phys. Rev. X 4 041041
[37] Andrews R W, Jones C, Reed M D, Jones A M, Ha S D, Jura M P, Kerckhoff J, Levendorf M, Meenehan S, Merkel S T, Smith A, Sun B, Weinstein A J, Rakher M T, Ladd T D and Borselli M G 2019 Nat. Nanotechnol. 14 747
[38] Guo A L, Tu T, Zhu L T and Li C F 2021 Chin, Phys. Lett. 38 094203
[39] Guo A L, Tu T, Zhu L T, Li C F and Guo G C 2022 Phys. Rev. A 106 032411
[40] Zhu L T, Tu T, Guo A L and Li C F 2022 Chin. Phys. B 31 120302
[1] Circuit quantum electrodynamics with a quadruple quantum dot
Ting Lin(林霆), Hai-Ou Li(李海欧), Gang Cao(曹刚), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2023, 32(7): 070307.
[2] Realization of the iSWAP-like gate among the superconducting qutrits
Peng Xu(许鹏), Ran Zhang(张然), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(2): 020306.
[3] Change-over switch for quantum states transfer with topological channels in a circuit-QED lattice
Liu-Yong Cheng(程留永), Li-Na Zheng(郑黎娜), Ruixiang Wu(吴瑞祥), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(2): 020305.
[4] Fast generation of W state via superadiabatic-based shortcut in circuit quantum electrodynamics
Xue-Mei Wang(王雪梅), An-Qi Zhang(张安琪), Peng Xu(许鹏, and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2021, 30(3): 030307.
[5] A scheme for two-photon lasing with two coupled flux qubits in circuit quantum electrodynamics
Huang Wen (黄文), Zou Xu-Bo (邹旭波), Guo Guang-Can (郭光灿). Chin. Phys. B, 2015, 24(6): 064207.
[6] Preparation of multi-photon Fock states and quantum entanglement properties in circuit QED
Ji Ying-Hua (嵇英华), Hu Ju-Ju (胡菊菊). Chin. Phys. B, 2014, 23(4): 040307.
[7] Controllable cross-Kerr interaction between microwave photons in circuit quantum electrodynamics
Wu Qin-Qin (吴琴琴), Liao Jie-Qiao(廖洁桥), and Kuang Le-Man(匡乐满). Chin. Phys. B, 2011, 20(3): 034203.
[8] Distributed quantum computation with superconducting qubit via LC circuit using dressed states
Wu Chao(吴超), Fang Mao-Fa(方卯发), Xiao Xing(肖兴), Li Yan-Ling(李艳玲), and Cao Shuai(曹帅). Chin. Phys. B, 2011, 20(2): 020305.
[9] Nondestructive and complete Bell-state analysis for atomic qubit systems
He Yong(何勇) and Jiang Nian-Quan(姜年权). Chin. Phys. B, 2010, 19(9): 090310.
No Suggested Reading articles found!