Perfect photon absorption based on the optical parametric process
Yang Zhang(张旸)1, Yu-Bo Ma(马宇波)1, Xin-Ping Li(李新平)1, Yu Guo(郭钰)2,†, and Chang-Shui Yu(于长水)3,‡
1 Institute of Theoretical Physics, Shanxi Datong University, Datong 037009, China; 2 Institute of Quantum Information Science, Shanxi Datong University, Datong 037009, China; 3 School of Physics, Dalian University of Technology, Dalian 116024, China
Abstract The perfect photon absorption is studied in a cavity quantum electrodynamics (CQED) system, in which an optical parameter amplifier (OPA) is coupled to the cavity mode. This makes it possible to control the optical phase to realize the perfect photon absorption. It is found that in the presence of one and two injected fields, the perfect photon absorption is present in these two cases and can be controlled by adjusting the parametric phase. Moreover, different from the previous predictions of perfect photon absorption in atomic CQED systems, the perfect photon absorption can be changed significantly by the relative phase. Our work provides a new platform to use the parametric processes to make an available way to control the behaviors of photons and to take advantage of the optical phase to achieve the perfect photon absorption.
(Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)
Fund: Project supported by the Scientific and Technological Innovation Program of Higher Eduation Institutions in Shanxi Province, China (Grant Nos. 2020L0471 and 2020L0472), the National Natural Science Foundation of China (Grant Nos. 11847128, 11775040, and 11971277), and the Science Technology Plan Project of Datong City, China (Grant No. 2020153).
Yang Zhang(张旸), Yu-Bo Ma(马宇波), Xin-Ping Li(李新平), Yu Guo(郭钰), and Chang-Shui Yu(于长水) Perfect photon absorption based on the optical parametric process 2021 Chin. Phys. B 30 064203
[1] Chang D E, Vuletić V and Lukin M D 2014 Nat. Photon.8 685 [2] Zipfel W R, Williams R M, and Webb W W 2003 Nat. Biotechnol.21 1369 [3] Cao D Z, Xu B L, Zhang S H and Wang K G 2015 Chin. Phys. Lett.32 114208 [4] Xu F X, Li X G and Zhang Z Y 2019 Acta Phys. Sin.68 147103 (in Chinese) [5] Baranov D G, Krasnok A, Shegai T, Alu A and Chong Y D 2017 Nat. Rev. Mater.2 17064 [6] Yang L R, Wang C F and Zhang D W 2015 Chin. Phys. Lett.32 64210 [7] Harris S E 1997 Phys. Today50 36 [8] Harris S E, Field J E and Imanoglu A 1990 Phys. Rev. Lett.64 1107 [9] small Akulshin A M, Barreiro S and Lezama A 1998 Phys. Rev. A57 2996 [10] Lezama A, Barreiro S and Akulshin A M 1999 Phys. Rev. A59 4732 [11] Agarwal G S and Huang S M 2010 Phys. Rev. A81 041803 [12] Weis S, Riviére R, Deléglise S, Gavartin E, Arcizet O, Schliesser A and Kippenberg T J 2010 Science330 1520 [13] Zheng M H, Wang T, Wang D Y, Bai C H, Zhang S, An C S and Wang H F 2019 Sci. China-Phys. Mech. Astron.62 950311 [14] Wu S C, Qin L G, Jing J, Yang G H and Wang Z Y 2016 Chin. Phys. B25 054203 [15] Liu Y C, Hu Y W, Wong C W and Xiao Y F 2013 Chin. Phys. B22 114213 [16] Qu K and Agarwal G S 2013 Phys. Rev. A87 031802 [17] Hocke F, Zhou X, Schliesser A, Kippenberg T J, Hubel H and Gross R 2012 New J. Phys.14 123037 [18] Wan W, Chong Y, Ge L, Noh H, Stone A D and Cao H 2011 Science331 889 [19] Stone A D 2011 Phys. Today64 68 [20] Yoon J W, Koh G M, Song S H and Magnusson R 2012 Phys. Rev. Lett.109 257402 [21] Zanotto S, Mezzapesa F P, Bianco F, Biasiol G, Baldacci L, Vitiello M S, Sorba L, Colombelli R and Tredicucci A 2019 Nat. Phys.10 830 [22] Kang M and Chong Y D C 2015 Phys. Rev. A92 043826 [23] Mock A 2015 IEEE Photon. J.4 2229 [24] Li Y and Argyropoulos C 2018 Opt. Lett.43 1806 [25] G. S. Agarwal and Y. F. Zhu 2015 Phys. Rev. A92 023824 [26] Agarwal G S, Di K, Wang L Y and Zhu Y F 2016 Phys. Rev. A93 063805 [27] Xiong W, Chen J J, Fang B L, Lam C H and You J Q 2020 Phys. Rev. A101 063822 [28] Wang L Y, Zhu Y F, Di K and Agarwal G S 2017 Phys. Rev. A95 013841 [29] Wei Y H, Gu W J, Yang G Q, Zhu Y F and Li G X 2018 Phys. Rev. A97 053825 [30] Xia X W, Zhang X Q, Xu J P, Cheng M T and Yang Y P 2018 Chin. Phys. B27 114205 [31] Peng Y D, Zhang Z J, Xu L, Yang A H and Ren T Q 2018 J. Opt. Soc. Am. B35 81 [32] Yang G Q, Tan Z, Zou B C and Zhu Y F 2014 Opt. Lett.39 6695 [33] Crescimanno M, Zhou C, Andrews J H and Baker M A 2015 Phys. Rev. A91 013845 [34] Huang S M and Agarwal G S 2014 Opt. Express22 20936 [35] Reddy K N and Gupta S D 2013 Opt. Lett.38 005252 [36] Reddy K N, Gopal A V and Gupta S D 2013 Opt. Lett.38 002517 [37] Roger T, Vezzoli S, Bolduc E, Valente J, Heitz J J F, Jeffers J, Soci C, Leach J, Couteau C and Zheludev N I 2015 Nat. Commun.6 7031 [38] Longhi S 2011 Phys. Rev. A83 055804 [39] Bruck R and Muskens O L 2015 Opt. Express21 27652 [40] Baum B, Alaeian H and Dionne J 2015 J. Appl. Phys.117 063106 [41] Fang X, Tseng M L, Ou J Y, MacDonald K F, Tsai D P and Zheludev Ni I 2014 Appl. Phys. Lett.104 141102 [42] Fante R L and McCormack M T 1988 IEEE Trans. Ant. Prop.36 1443 [43] Liu N, Mesch M, Weiss T, Hentschel M and Giessen H 2010 Nano Lett.10 2342 [44] Kravets V G, Schedin F, Jalil R, Britnell L, Gorbachev R V, Ansell D, Thackray B, Novoselov K S, Geim A K, Kabashin A V and Grigorenko A N 2013 Nat. Mater.12 304 [45] Chow J H, Taylor M A, Lam T T Y, Knittel J, Sawtell-Rickson J D, Shaddock D A, Gray M B, McClelland D E and Bowen W P 2012 Opt. Express20 12622 [46] Shen J T and Fan S H 2010 Phys. Rev. A82 021802(R) [47] Zheng Y L, Ren H J, Wan W J and X F Chen 2013 Sci. Rep.3 3245 [48] Zhang J F, Guo C C, L K, Zhu Z H, Ye W M, Yuan X D and Qin S Q 2014 Opt. Express22 012524 [49] Chong Y D and Stone A D 2011 Phys. Rev. Lett.107 163901 [50] Walther H, Varcoe B T H, Englert B G and Becker T 2006 Rep. Prog. Phys.69 1325 [51] Thompson R J, Rempe G and Kimble H J 1992 Phys. Rev. Lett.68 1132 [52] Zhong T, Kindem J M, Rochman J and Faraon A 2017 Nat. Commun.8 14107 [53] Braunstein S L and Loock P V 2005 Rev. Mod. Phys.77 513 [54] Xiong W, Qiu Y, Wu L A and You J Q 2018 New J. Phys.20 043037 [55] Qin W, Miranowicz A, Li P B, Lü X Y, You J Q and Nori F 2018 Phys. Rev. Lett.120 093601 [56] Stolen R and Bjorkholm J 1982 IEEE J. Quantum Electron18 1062 [57] Sarma B and Sarma K 2017 Phys. Rev. A96 053827 [58] Shen S T, Qu Y, Li J H and Wu Y 2019 Phys. Rev. A100 023814 [59] Li H, Zhang S Q, Guo M, Li M X and Song L J 2019 Acta Phys. Sin.68 124203 (in Chinese) [60] Yan C H, Jia W Z, Jia X H, Yuan H, Li Y and Yuan H D 2019 Phys. Rev. A100 023826 [61] Huang S M and Chen A X 2020 Phys. Rev. A102 023503 [62] Peano V, Schwefel H G L, Marquardt C and Marquardt F 2015 Phys. Rev. Lett.115 243603 [63] Zhao W, Zhang S D, Miranowicz A and Jing H 2020 Sci. China-Phys. Mech. Astron63 224211 [64] Walls D F and Milburn G J 1994 Quantum Optics (Berlin: Springer) pp. 127-141 [65] Yan X B, Cui C L, Gu K H, Tian X D, Fu C B and Wu J H 2014 Opt. Express22 004886 [66] Zhang Y, Sohail A and Yu C S 2016 Europhys. Lett.115 64002
Qubits based on semiconductor quantum dots Xin Zhang(张鑫), Hai-Ou Li(李海欧), Ke Wang(王柯), Gang Cao(曹刚), Ming Xiao(肖明), Guo-Ping Guo(郭国平). Chin. Phys. B, 2018, 27(2): 020305.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.