Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 064203    DOI: 10.1088/1674-1056/abd7d9
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Perfect photon absorption based on the optical parametric process

Yang Zhang(张旸)1, Yu-Bo Ma(马宇波)1, Xin-Ping Li(李新平)1, Yu Guo(郭钰)2,†, and Chang-Shui Yu(于长水)3,‡
1 Institute of Theoretical Physics, Shanxi Datong University, Datong 037009, China;
2 Institute of Quantum Information Science, Shanxi Datong University, Datong 037009, China;
3 School of Physics, Dalian University of Technology, Dalian 116024, China
Abstract  The perfect photon absorption is studied in a cavity quantum electrodynamics (CQED) system, in which an optical parameter amplifier (OPA) is coupled to the cavity mode. This makes it possible to control the optical phase to realize the perfect photon absorption. It is found that in the presence of one and two injected fields, the perfect photon absorption is present in these two cases and can be controlled by adjusting the parametric phase. Moreover, different from the previous predictions of perfect photon absorption in atomic CQED systems, the perfect photon absorption can be changed significantly by the relative phase. Our work provides a new platform to use the parametric processes to make an available way to control the behaviors of photons and to take advantage of the optical phase to achieve the perfect photon absorption.
Keywords:  photon absorption      cavity quantum electrodynamics      optical parameter amplifier  
Received:  15 November 2020      Revised:  24 December 2020      Accepted manuscript online:  04 January 2021
PACS:  42.50.-p (Quantum optics)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
Fund: Project supported by the Scientific and Technological Innovation Program of Higher Eduation Institutions in Shanxi Province, China (Grant Nos. 2020L0471 and 2020L0472), the National Natural Science Foundation of China (Grant Nos. 11847128, 11775040, and 11971277), and the Science Technology Plan Project of Datong City, China (Grant No. 2020153).
Corresponding Authors:  Yu Guo, Chang-Shui Yu     E-mail:  guoyu3@aliyun.com;ycs@dlut.edu.cn

Cite this article: 

Yang Zhang(张旸), Yu-Bo Ma(马宇波), Xin-Ping Li(李新平), Yu Guo(郭钰), and Chang-Shui Yu(于长水) Perfect photon absorption based on the optical parametric process 2021 Chin. Phys. B 30 064203

[1] Chang D E, Vuletić V and Lukin M D 2014 Nat. Photon. 8 685
[2] Zipfel W R, Williams R M, and Webb W W 2003 Nat. Biotechnol. 21 1369
[3] Cao D Z, Xu B L, Zhang S H and Wang K G 2015 Chin. Phys. Lett. 32 114208
[4] Xu F X, Li X G and Zhang Z Y 2019 Acta Phys. Sin. 68 147103 (in Chinese)
[5] Baranov D G, Krasnok A, Shegai T, Alu A and Chong Y D 2017 Nat. Rev. Mater. 2 17064
[6] Yang L R, Wang C F and Zhang D W 2015 Chin. Phys. Lett. 32 64210
[7] Harris S E 1997 Phys. Today 50 36
[8] Harris S E, Field J E and Imanoglu A 1990 Phys. Rev. Lett. 64 1107
[9] small Akulshin A M, Barreiro S and Lezama A 1998 Phys. Rev. A 57 2996
[10] Lezama A, Barreiro S and Akulshin A M 1999 Phys. Rev. A 59 4732
[11] Agarwal G S and Huang S M 2010 Phys. Rev. A 81 041803
[12] Weis S, Riviére R, Deléglise S, Gavartin E, Arcizet O, Schliesser A and Kippenberg T J 2010 Science 330 1520
[13] Zheng M H, Wang T, Wang D Y, Bai C H, Zhang S, An C S and Wang H F 2019 Sci. China-Phys. Mech. Astron. 62 950311
[14] Wu S C, Qin L G, Jing J, Yang G H and Wang Z Y 2016 Chin. Phys. B 25 054203
[15] Liu Y C, Hu Y W, Wong C W and Xiao Y F 2013 Chin. Phys. B 22 114213
[16] Qu K and Agarwal G S 2013 Phys. Rev. A 87 031802
[17] Hocke F, Zhou X, Schliesser A, Kippenberg T J, Hubel H and Gross R 2012 New J. Phys. 14 123037
[18] Wan W, Chong Y, Ge L, Noh H, Stone A D and Cao H 2011 Science 331 889
[19] Stone A D 2011 Phys. Today 64 68
[20] Yoon J W, Koh G M, Song S H and Magnusson R 2012 Phys. Rev. Lett. 109 257402
[21] Zanotto S, Mezzapesa F P, Bianco F, Biasiol G, Baldacci L, Vitiello M S, Sorba L, Colombelli R and Tredicucci A 2019 Nat. Phys. 10 830
[22] Kang M and Chong Y D C 2015 Phys. Rev. A 92 043826
[23] Mock A 2015 IEEE Photon. J. 4 2229
[24] Li Y and Argyropoulos C 2018 Opt. Lett. 43 1806
[25] G. S. Agarwal and Y. F. Zhu 2015 Phys. Rev. A 92 023824
[26] Agarwal G S, Di K, Wang L Y and Zhu Y F 2016 Phys. Rev. A 93 063805
[27] Xiong W, Chen J J, Fang B L, Lam C H and You J Q 2020 Phys. Rev. A 101 063822
[28] Wang L Y, Zhu Y F, Di K and Agarwal G S 2017 Phys. Rev. A 95 013841
[29] Wei Y H, Gu W J, Yang G Q, Zhu Y F and Li G X 2018 Phys. Rev. A 97 053825
[30] Xia X W, Zhang X Q, Xu J P, Cheng M T and Yang Y P 2018 Chin. Phys. B 27 114205
[31] Peng Y D, Zhang Z J, Xu L, Yang A H and Ren T Q 2018 J. Opt. Soc. Am. B 35 81
[32] Yang G Q, Tan Z, Zou B C and Zhu Y F 2014 Opt. Lett. 39 6695
[33] Crescimanno M, Zhou C, Andrews J H and Baker M A 2015 Phys. Rev. A 91 013845
[34] Huang S M and Agarwal G S 2014 Opt. Express 22 20936
[35] Reddy K N and Gupta S D 2013 Opt. Lett. 38 005252
[36] Reddy K N, Gopal A V and Gupta S D 2013 Opt. Lett. 38 002517
[37] Roger T, Vezzoli S, Bolduc E, Valente J, Heitz J J F, Jeffers J, Soci C, Leach J, Couteau C and Zheludev N I 2015 Nat. Commun. 6 7031
[38] Longhi S 2011 Phys. Rev. A 83 055804
[39] Bruck R and Muskens O L 2015 Opt. Express 21 27652
[40] Baum B, Alaeian H and Dionne J 2015 J. Appl. Phys. 117 063106
[41] Fang X, Tseng M L, Ou J Y, MacDonald K F, Tsai D P and Zheludev Ni I 2014 Appl. Phys. Lett. 104 141102
[42] Fante R L and McCormack M T 1988 IEEE Trans. Ant. Prop. 36 1443
[43] Liu N, Mesch M, Weiss T, Hentschel M and Giessen H 2010 Nano Lett. 10 2342
[44] Kravets V G, Schedin F, Jalil R, Britnell L, Gorbachev R V, Ansell D, Thackray B, Novoselov K S, Geim A K, Kabashin A V and Grigorenko A N 2013 Nat. Mater. 12 304
[45] Chow J H, Taylor M A, Lam T T Y, Knittel J, Sawtell-Rickson J D, Shaddock D A, Gray M B, McClelland D E and Bowen W P 2012 Opt. Express 20 12622
[46] Shen J T and Fan S H 2010 Phys. Rev. A 82 021802(R)
[47] Zheng Y L, Ren H J, Wan W J and X F Chen 2013 Sci. Rep. 3 3245
[48] Zhang J F, Guo C C, L K, Zhu Z H, Ye W M, Yuan X D and Qin S Q 2014 Opt. Express 22 012524
[49] Chong Y D and Stone A D 2011 Phys. Rev. Lett. 107 163901
[50] Walther H, Varcoe B T H, Englert B G and Becker T 2006 Rep. Prog. Phys. 69 1325
[51] Thompson R J, Rempe G and Kimble H J 1992 Phys. Rev. Lett. 68 1132
[52] Zhong T, Kindem J M, Rochman J and Faraon A 2017 Nat. Commun. 8 14107
[53] Braunstein S L and Loock P V 2005 Rev. Mod. Phys. 77 513
[54] Xiong W, Qiu Y, Wu L A and You J Q 2018 New J. Phys. 20 043037
[55] Qin W, Miranowicz A, Li P B, Lü X Y, You J Q and Nori F 2018 Phys. Rev. Lett. 120 093601
[56] Stolen R and Bjorkholm J 1982 IEEE J. Quantum Electron 18 1062
[57] Sarma B and Sarma K 2017 Phys. Rev. A 96 053827
[58] Shen S T, Qu Y, Li J H and Wu Y 2019 Phys. Rev. A 100 023814
[59] Li H, Zhang S Q, Guo M, Li M X and Song L J 2019 Acta Phys. Sin. 68 124203 (in Chinese)
[60] Yan C H, Jia W Z, Jia X H, Yuan H, Li Y and Yuan H D 2019 Phys. Rev. A 100 023826
[61] Huang S M and Chen A X 2020 Phys. Rev. A 102 023503
[62] Peano V, Schwefel H G L, Marquardt C and Marquardt F 2015 Phys. Rev. Lett. 115 243603
[63] Zhao W, Zhang S D, Miranowicz A and Jing H 2020 Sci. China-Phys. Mech. Astron 63 224211
[64] Walls D F and Milburn G J 1994 Quantum Optics (Berlin: Springer) pp. 127-141
[65] Yan X B, Cui C L, Gu K H, Tian X D, Fu C B and Wu J H 2014 Opt. Express 22 004886
[66] Zhang Y, Sohail A and Yu C S 2016 Europhys. Lett. 115 64002
[1] Simulating the resonance-mediated (1+2)-three-photon absorption enhancement in Pr3+ ions by a rectangle phase modulation
Wenjing Cheng(程文静), Yuan Li(李媛), Hongzhen Qiao(乔红贞), Meng Wang(王蒙), Shaoshuo Ma(马绍朔), Fangjie Shu(舒方杰), Chuanqi Xie(解传奇), and Guo Liang(梁果). Chin. Phys. B, 2022, 31(6): 063201.
[2] Computational design of ratiometric two-photon fluorescent Zn2+ probes based on quinoline and di-2-picolylamine moieties
Zhe Shao(邵哲), Wen-Ying Zhang(张纹莹), and Ke Zhao(赵珂). Chin. Phys. B, 2022, 31(5): 053302.
[3] Reversible waveform conversion between microwave and optical fields in a hybrid opto-electromechanical system
Li-Guo Qin(秦立国), Zhong-Yang Wang(王中阳), Jie-Hui Huang(黄接辉), Li-Jun Tian(田立君), and Shang-Qing Gong(龚尚庆). Chin. Phys. B, 2021, 30(6): 068502.
[4] Absorption interferometer of two-sided cavity
Miao-Di Guo(郭苗迪) and Hong-Mei Li(李红梅). Chin. Phys. B, 2021, 30(5): 054202.
[5] Zebrafish imaging and two-photon fluorescence imaging using ZnSe quantum dots
Nan-Nan Zhang(张楠楠), Li-Ya Zhou(周立亚), Xiao Liu(刘潇), Zhong-Chao Wei(韦中超), Hai-Ying Liu(刘海英), Sheng Lan(兰胜), Zhao Meng(孟钊), and Hai-Hua Fan(范海华). Chin. Phys. B, 2021, 30(4): 044204.
[6] Ultrafast carrier dynamics of Cu2O thin film induced by two-photon excitation
Jian Liu(刘建), Jing Li(李敬), Kai-Jun Mu(牧凯军), Xin-Wei Shi(史新伟), Jun-Qiao Wang(王俊俏), Miao Mao(毛淼), Shu Chen(陈述), and Er-Jun Liang(梁二军). Chin. Phys. B, 2021, 30(11): 114205.
[7] Responsive mechanism and coordination mode effect of a bipyridine-based two-photon fluorescent probe for zinc ion
Han Zhang(张瀚), Zhe Shao(邵哲), Ke Zhao(赵珂). Chin. Phys. B, 2020, 29(8): 083304.
[8] Semi-integer harmonic generation from an argon atom by bichromatic counter-rotating circularly polarized laser field
Tong Qi(齐桐), Xiao-Xin Huo(霍晓鑫), Jun Zhang(张军), Xue-Shen Liu(刘学深). Chin. Phys. B, 2020, 29(5): 053201.
[9] Influence of driving ways on measurement of relative phase in a two-atoms cavity system
Daqiang Bao(包大强), Jingping Xu(许静平), Yaping Yang(羊亚平). Chin. Phys. B, 2020, 29(4): 043702.
[10] Soliton evolution and control in a two-mode fiber with two-photon absorption
Qianying Li(李倩颖). Chin. Phys. B, 2020, 29(1): 014204.
[11] High-power ultraviolet 278-nm laser from fourth-harmonic generation of an Nd: YAG amplifier in CsB3O5 crystal
Miao He(何苗), Feng Yang(杨峰), Cheng Dong(董程), Zhi-Chao Wang(王志超), Lei Yuan(袁磊), Yi-Ting Xu(徐一汀), Guo-Chun Zhang(张国春), Zhi-Min Wang(王志敏), Yong Bo(薄勇), Qin-Jun Peng(彭钦军), Da-Fu Cui(崔大复), Yi-Cheng Wu(吴以成), Zu-Yan Xu(许祖彦). Chin. Phys. B, 2018, 27(5): 054211.
[12] Qubits based on semiconductor quantum dots
Xin Zhang(张鑫), Hai-Ou Li(李海欧), Ke Wang(王柯), Gang Cao(曹刚), Ming Xiao(肖明), Guo-Ping Guo(郭国平). Chin. Phys. B, 2018, 27(2): 020305.
[13] Responsive mechanism and molecular design of di-2-picolylamine-based two-photon fluorescent probes for zinc ions
Mei-Yu Zhu(朱美玉), Ke Zhao(赵珂), Jun Song(宋军), Chuan-Kui Wang(王传奎). Chin. Phys. B, 2018, 27(2): 023302.
[14] Up-conversion luminescence tuning in Er3+-doped ceramic glass by femtosecond laser pulse at different laser powers
Wen-Jing Cheng(程文静), Guo Liang(梁果), Ping Wu(吴萍), Shi-Hua Zhao(赵世华), Tian-Qing Jia(贾天卿), Zhen-Rong Sun(孙真荣), Shi-An Zhang(张诗按). Chin. Phys. B, 2018, 27(12): 123201.
[15] Dynamic properties of atomic collective decay in cavity quantum electrodynamics
Yu-Feng Han(韩玉峰), Cheng-Jie Zhu(朱成杰), Xian-Shan Huang(黄仙山), Ya-Ping Yang(羊亚平). Chin. Phys. B, 2018, 27(12): 124206.
No Suggested Reading articles found!