|
|
Change-over switch for quantum states transfer with topological channels in a circuit-QED lattice |
Liu-Yong Cheng(程留永)1,2,†, Li-Na Zheng(郑黎娜)1, Ruixiang Wu(吴瑞祥)1,2, Hong-Fu Wang(王洪福)3, and Shou Zhang(张寿)3 |
1 School of Physics and Information Engineering, Shanxi Normal University, Linfen 041004, China; 2 Key Laboratory of Spectral Measurement and Analysis of Shanxi Province, Shanxi Normal University, Linfen 041004, China; 3 Department of Physics, College of Science, Yanbian University, Yanji 133002, China |
|
|
Abstract We propose schemes to realize robust quantum states transfer between distant resonators using the topological edge states of a one-dimensional circuit quantum electrodynamics (QED) lattice. Analyses show that the distribution of edge states can be regulated accordingly with the on-site defects added on the resonators. And we can achieve different types of quantum state transfer without adjusting the number of lattices. Numerical simulations demonstrate that the on-site defects can be used as a change-over switch for high-fidelity single-qubit and two-qubit quantum states transfer. This work provides a viable prospect for flexible quantum state transfer in solid-state topological quantum system.
|
Received: 27 August 2021
Revised: 23 September 2021
Accepted manuscript online: 13 October 2021
|
PACS:
|
03.67.-a
|
(Quantum information)
|
|
42.50.Pq
|
(Cavity quantum electrodynamics; micromasers)
|
|
Corresponding Authors:
Liu-Yong Cheng
E-mail: lycheng@sxnu.edu.cn
|
Cite this article:
Liu-Yong Cheng(程留永), Li-Na Zheng(郑黎娜), Ruixiang Wu(吴瑞祥), Hong-Fu Wang(王洪福), and Shou Zhang(张寿) Change-over switch for quantum states transfer with topological channels in a circuit-QED lattice 2022 Chin. Phys. B 31 020305
|
[1] Zhu S L, Wang Z D and Yang K Y 2003 Phys. Rev. A 68 034303 [2] Chaneli'ere T, Matsukevich D N, Jenkins S D, et al. 2006 Nature 438 833 [3] Cheng S T, Wang C Y and Tao M H 2005 IEEE J. Sel. Areas Commun. 23 1424 [4] Gisin N and Thew R 2007 Nat. Photon. 1 165 [5] Chapuran T E, Toliver P, Peters N A, et al. 2009 New J. Phys. 11 105001 [6] Peev M, Pacher C, Alléaume R, et al. 2009 New J. Phys. 11 075001 [7] Axline C J, Burkhart L D, Pfaff W, et al. 2018 Nat. Phys. 14 705 [8] Cirac J I, Zoller P, Kimble H J and Mabuchi H 1997 Phys. Rev. Lett. 78 3221 [9] Parkins A S and Kimble H J 1999 J. Opt. B 1 496 [10] Van Enk S J, Cirac J I and Zoller P, Kimble H J and Mabuchi H 1997 J. Mod. Opt. 44 1727 [11] Kozhekin A E, Mφlmer K and Polzik E 2000 Phys. Rev. A 62 033809 [12] Christandl M, Datta N, Ekert A and Landahl A J 2004 Phys. Rev. Lett. 92 187902 [13] de Moraes Neto G D, Andrade F M, Montenegro and Bose S 2016 Phys. Rev. A 93 062339 [14] Jahne K, Yurke B and Gavish U 2007 Phys. Rev. A 75 010301 [15] Yin Z Q and Li F L 2007 Phys. Rev. A 75 012324 [16] Yang W L, Yin Z Q and Xu Z Y, Feng M and Oh C H 2011 Phys. Rev. A 84 043849 [17] Wang Y D and Clerk A A 2012 Phys. Rev. Lett. 108 153603 [18] Stute A, Casabone B, Brandstätter B, et al. 2013 Nat. Photon. 7 219 [19] Paternostro M, Palma G M, Kim M S and Falci G 2005 Phys. Rev. A 71 042311 [20] He Q L, Sun J, Song X S and Xiao Y J 2021 Chin. Phys. B 30 010305 [21] Srinivasan S J, Hoffman A J, Gambetta J M and Houck A A 2011 Phys. Rev. Lett. 106 083601 [22] Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M and Schoelkopf R J 2004 Nature 431 162 [23] Sebastian S and Jens K 2013 Ann Phys. 525 395 [24] Xiang Z L, Ashhab S, You J Q and Nori F 2013 Rev. Mod. Phys. 85 623 [25] Blais A, Huang R S, Wallra A, Girvin S M and Schoelkopf R J 2004 Phys. Rev. A 69 062320 [26] Gu X, Kockum A F, Miranowicz A, Liu Y X and Nori F 2017 Phys. Rep. 718-719 1 [27] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801 [28] Fu L, Kane C L and Mele E J 2007 Phys. Rev. Lett. 98 106803 [29] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045 [30] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057 [31] Chiu C K, Teo J C Y, Schnyder A P and Ryu S 2016 Rev. Mod. Phys. 88 035005 [32] Bansil A, Lin H and Das T 2016 Rev. Mod. Phys. 88 021004 [33] Bonderson P and Nayak C 2013 Phys. Rev. B 87 195451 [34] Paananen T and Dahm T 2013 Phys. Rev. B 87 195447 [35] Yong J, Jiang Y P, Usanmaz D, Curtarolo S, Zhang X H, Li L Z, Pan X Q, Shin J, Takeuchi I and Greene R L 2014 Appl. Phys. Lett. 105 222403 [36] Chazal F, Fasy B, Lecci F, Michel B, Rinaldo A and Wasserman L 2018 The Journal of Machine Learning Research 18 1 [37] Takagaki Y, Giussani A, Perumal K, Calarco R and Friedland K J 2012 Phys. Rev. B 86 125137 [38] Mei F, Chen G, Tian L, Zhu S L and Jia S T 2018 Phys. Rev. A 98 012331 [39] Ribeiro Jr L A, Cunha W F da and Fonseca A L d A, Silva G M and Stafström S 2015 J. Phys. Chem. Lett. 6 510 [40] Qi L, Liu S, Zhang S and Wang H F 2020 Opt. Lett. 45 2018 [41] Alicea J, Oreg Y, Refael G, Oppen F V and Fisher M P A 2011 Nat. Phys. 7 412 [42] Duclos-Cianci G and Poulin D 2010 Phys. Rev. Lett. 104 050504 [43] Bonderson P and Lutchyn R M 2011 Phys. Rev. Lett. 106 130505 [44] Kim I H 2013 Phys. Rev. Lett. 111 080503 [45] Longhi S, Giorgi G L and Zambrini R 2019 Adv. Quantum Technol. 2 1800090 [46] Lemonde M A, Peano V, Rabl P and Angelakis D G 2019 New J. Phys. 21 113030 [47] Zheng L N, Qi L and Cheng L Y, Wang H F and Zhang S 2020 Phys. Rev. A 102 012606 [48] Mei F, Xue Z Y, Zhang D W, Tian L, Lee C H and Zhu S L 2016 Quantum Sci. Technol. 1 015006 [49] Manucharyan V E, Koch J, Glazman L I and Devoret M H 2009 Science 326 113 [50] Manucharyan V E, Masluk N A, Kamal A, Koch J, Glazman L I and Devoret M H 2012 Phys. Rev. B 85 024521 [51] Kraus Y E and Zilberberg O 2012 Phys. Rev. Lett. 109 116404 [52] Qi L, Wang G L, Liu S, Zhang S and Wang H F 2020 Phys. Rev. A 102 022404 [53] Niemczyk T, Deppe F, Huebl H, Menzel E P, Hocke F, Schwarz M J, Garcia-Ripoll J J, Zueco D, Hümmer T, Solano E, Marx A and Gross R 2010 Nat. Phys. 6 772 [54] Vissers M R, Kline J S and Gao J, Wisbeyb S and Pappasc P D 2012 Appl. Phys. Lett. 100 082602 [55] Bruno A, Lange G D, Asaad S, van der Enden K L, Langford N K and DiCarlo L 2015 Appl. Phys. Lett. 106 182601 [56] Pachos J and Walther H 2002 Phys. Rev. Lett. 89 187903 [57] Huang X R, Ding Z X, Hu C S, Shen L T, Li W, Wu H and Zheng S B 2018 Phys. Rev. A 98 052324 [58] D'Angelis F M, Pinheiro F A, Guéry-Odelin D, Longhi S and Impens F 2020 Phys. Rev. Research 2 033475 [59] Huang B H, Kang Y H, Chen Y H, Shi Z C, Song J and Xia Y 2018 Phys. Rev. A 97 012333 [60] Palaiodimopoulos N E, Brouzos I, Diakonos F K and Theocharis G 2021 Phys. Rev. A 103 052409 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|