Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(2): 020305    DOI: 10.1088/1674-1056/ac2f2e
GENERAL Prev   Next  

Change-over switch for quantum states transfer with topological channels in a circuit-QED lattice

Liu-Yong Cheng(程留永)1,2,†, Li-Na Zheng(郑黎娜)1, Ruixiang Wu(吴瑞祥)1,2, Hong-Fu Wang(王洪福)3, and Shou Zhang(张寿)3
1 School of Physics and Information Engineering, Shanxi Normal University, Linfen 041004, China;
2 Key Laboratory of Spectral Measurement and Analysis of Shanxi Province, Shanxi Normal University, Linfen 041004, China;
3 Department of Physics, College of Science, Yanbian University, Yanji 133002, China
Abstract  We propose schemes to realize robust quantum states transfer between distant resonators using the topological edge states of a one-dimensional circuit quantum electrodynamics (QED) lattice. Analyses show that the distribution of edge states can be regulated accordingly with the on-site defects added on the resonators. And we can achieve different types of quantum state transfer without adjusting the number of lattices. Numerical simulations demonstrate that the on-site defects can be used as a change-over switch for high-fidelity single-qubit and two-qubit quantum states transfer. This work provides a viable prospect for flexible quantum state transfer in solid-state topological quantum system.
Keywords:  quantum states transfer      edge states      change-over switch      circuit quantum electrodynamics (QED) lattice  
Received:  27 August 2021      Revised:  23 September 2021      Accepted manuscript online:  13 October 2021
PACS:  03.67.-a (Quantum information)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
Corresponding Authors:  Liu-Yong Cheng     E-mail:  lycheng@sxnu.edu.cn

Cite this article: 

Liu-Yong Cheng(程留永), Li-Na Zheng(郑黎娜), Ruixiang Wu(吴瑞祥), Hong-Fu Wang(王洪福), and Shou Zhang(张寿) Change-over switch for quantum states transfer with topological channels in a circuit-QED lattice 2022 Chin. Phys. B 31 020305

[1] Zhu S L, Wang Z D and Yang K Y 2003 Phys. Rev. A 68 034303
[2] Chaneli'ere T, Matsukevich D N, Jenkins S D, et al. 2006 Nature 438 833
[3] Cheng S T, Wang C Y and Tao M H 2005 IEEE J. Sel. Areas Commun. 23 1424
[4] Gisin N and Thew R 2007 Nat. Photon. 1 165
[5] Chapuran T E, Toliver P, Peters N A, et al. 2009 New J. Phys. 11 105001
[6] Peev M, Pacher C, Alléaume R, et al. 2009 New J. Phys. 11 075001
[7] Axline C J, Burkhart L D, Pfaff W, et al. 2018 Nat. Phys. 14 705
[8] Cirac J I, Zoller P, Kimble H J and Mabuchi H 1997 Phys. Rev. Lett. 78 3221
[9] Parkins A S and Kimble H J 1999 J. Opt. B 1 496
[10] Van Enk S J, Cirac J I and Zoller P, Kimble H J and Mabuchi H 1997 J. Mod. Opt. 44 1727
[11] Kozhekin A E, Mφlmer K and Polzik E 2000 Phys. Rev. A 62 033809
[12] Christandl M, Datta N, Ekert A and Landahl A J 2004 Phys. Rev. Lett. 92 187902
[13] de Moraes Neto G D, Andrade F M, Montenegro and Bose S 2016 Phys. Rev. A 93 062339
[14] Jahne K, Yurke B and Gavish U 2007 Phys. Rev. A 75 010301
[15] Yin Z Q and Li F L 2007 Phys. Rev. A 75 012324
[16] Yang W L, Yin Z Q and Xu Z Y, Feng M and Oh C H 2011 Phys. Rev. A 84 043849
[17] Wang Y D and Clerk A A 2012 Phys. Rev. Lett. 108 153603
[18] Stute A, Casabone B, Brandstätter B, et al. 2013 Nat. Photon. 7 219
[19] Paternostro M, Palma G M, Kim M S and Falci G 2005 Phys. Rev. A 71 042311
[20] He Q L, Sun J, Song X S and Xiao Y J 2021 Chin. Phys. B 30 010305
[21] Srinivasan S J, Hoffman A J, Gambetta J M and Houck A A 2011 Phys. Rev. Lett. 106 083601
[22] Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M and Schoelkopf R J 2004 Nature 431 162
[23] Sebastian S and Jens K 2013 Ann Phys. 525 395
[24] Xiang Z L, Ashhab S, You J Q and Nori F 2013 Rev. Mod. Phys. 85 623
[25] Blais A, Huang R S, Wallra A, Girvin S M and Schoelkopf R J 2004 Phys. Rev. A 69 062320
[26] Gu X, Kockum A F, Miranowicz A, Liu Y X and Nori F 2017 Phys. Rep. 718-719 1
[27] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[28] Fu L, Kane C L and Mele E J 2007 Phys. Rev. Lett. 98 106803
[29] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[30] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[31] Chiu C K, Teo J C Y, Schnyder A P and Ryu S 2016 Rev. Mod. Phys. 88 035005
[32] Bansil A, Lin H and Das T 2016 Rev. Mod. Phys. 88 021004
[33] Bonderson P and Nayak C 2013 Phys. Rev. B 87 195451
[34] Paananen T and Dahm T 2013 Phys. Rev. B 87 195447
[35] Yong J, Jiang Y P, Usanmaz D, Curtarolo S, Zhang X H, Li L Z, Pan X Q, Shin J, Takeuchi I and Greene R L 2014 Appl. Phys. Lett. 105 222403
[36] Chazal F, Fasy B, Lecci F, Michel B, Rinaldo A and Wasserman L 2018 The Journal of Machine Learning Research 18 1
[37] Takagaki Y, Giussani A, Perumal K, Calarco R and Friedland K J 2012 Phys. Rev. B 86 125137
[38] Mei F, Chen G, Tian L, Zhu S L and Jia S T 2018 Phys. Rev. A 98 012331
[39] Ribeiro Jr L A, Cunha W F da and Fonseca A L d A, Silva G M and Stafström S 2015 J. Phys. Chem. Lett. 6 510
[40] Qi L, Liu S, Zhang S and Wang H F 2020 Opt. Lett. 45 2018
[41] Alicea J, Oreg Y, Refael G, Oppen F V and Fisher M P A 2011 Nat. Phys. 7 412
[42] Duclos-Cianci G and Poulin D 2010 Phys. Rev. Lett. 104 050504
[43] Bonderson P and Lutchyn R M 2011 Phys. Rev. Lett. 106 130505
[44] Kim I H 2013 Phys. Rev. Lett. 111 080503
[45] Longhi S, Giorgi G L and Zambrini R 2019 Adv. Quantum Technol. 2 1800090
[46] Lemonde M A, Peano V, Rabl P and Angelakis D G 2019 New J. Phys. 21 113030
[47] Zheng L N, Qi L and Cheng L Y, Wang H F and Zhang S 2020 Phys. Rev. A 102 012606
[48] Mei F, Xue Z Y, Zhang D W, Tian L, Lee C H and Zhu S L 2016 Quantum Sci. Technol. 1 015006
[49] Manucharyan V E, Koch J, Glazman L I and Devoret M H 2009 Science 326 113
[50] Manucharyan V E, Masluk N A, Kamal A, Koch J, Glazman L I and Devoret M H 2012 Phys. Rev. B 85 024521
[51] Kraus Y E and Zilberberg O 2012 Phys. Rev. Lett. 109 116404
[52] Qi L, Wang G L, Liu S, Zhang S and Wang H F 2020 Phys. Rev. A 102 022404
[53] Niemczyk T, Deppe F, Huebl H, Menzel E P, Hocke F, Schwarz M J, Garcia-Ripoll J J, Zueco D, Hümmer T, Solano E, Marx A and Gross R 2010 Nat. Phys. 6 772
[54] Vissers M R, Kline J S and Gao J, Wisbeyb S and Pappasc P D 2012 Appl. Phys. Lett. 100 082602
[55] Bruno A, Lange G D, Asaad S, van der Enden K L, Langford N K and DiCarlo L 2015 Appl. Phys. Lett. 106 182601
[56] Pachos J and Walther H 2002 Phys. Rev. Lett. 89 187903
[57] Huang X R, Ding Z X, Hu C S, Shen L T, Li W, Wu H and Zheng S B 2018 Phys. Rev. A 98 052324
[58] D'Angelis F M, Pinheiro F A, Guéry-Odelin D, Longhi S and Impens F 2020 Phys. Rev. Research 2 033475
[59] Huang B H, Kang Y H, Chen Y H, Shi Z C, Song J and Xia Y 2018 Phys. Rev. A 97 012333
[60] Palaiodimopoulos N E, Brouzos I, Diakonos F K and Theocharis G 2021 Phys. Rev. A 103 052409
[1] Quantum transport signatures of non-trivial topological edge states in a ring-shaped Su-Schrieffer-Heeger double-chain system
Cheng-Zhi Ye(叶成芝), Lan-Yun Zhang(张蓝云), and Hai-Bin Xue(薛海斌). Chin. Phys. B, 2022, 31(2): 027304.
[2] Topological photonic states in gyromagnetic photonic crystals: Physics, properties, and applications
Jianfeng Chen(陈剑锋) and Zhi-Yuan Li(李志远). Chin. Phys. B, 2022, 31(11): 114207.
[3] Efficient and stable wireless power transfer based on the non-Hermitian physics
Chao Zeng(曾超), Zhiwei Guo(郭志伟), Kejia Zhu(祝可嘉), Caifu Fan(范才富), Guo Li(李果), Jun Jiang(江俊), Yunhui Li(李云辉), Haitao Jiang(江海涛), Yaping Yang(羊亚平), Yong Sun(孙勇), and Hong Chen(陈鸿). Chin. Phys. B, 2022, 31(1): 010307.
[4] Floquet bands and photon-induced topological edge states of graphene nanoribbons
Weijie Wang(王威杰), Xiaolong Lü(吕小龙), and Hang Xie(谢航). Chin. Phys. B, 2021, 30(6): 066701.
[5] Quantum dynamics on a lossy non-Hermitian lattice
Li Wang(王利), Qing Liu(刘青), and Yunbo Zhang(张云波). Chin. Phys. B, 2021, 30(2): 020506.
[6] Erratum to “Floquet bands and photon-induced topological edge states of graphene nanoribbons”
Weijie Wang(王威杰), Xiaolong Lü(吕小龙), and Hang Xie(谢航). Chin. Phys. B, 2021, 30(11): 119901.
[7] High winding number of topological phase in non-unitary periodic quantum walk
Yali Jia(贾雅利) and Zhi-Jian Li(李志坚). Chin. Phys. B, 2021, 30(10): 100301.
[8] Edge states enhanced by long-range hopping: An analytical study
Huiping Wang(王会平), Li Ren(任莉), Liguo Qin(秦立国), and Yueyin Qiu(邱岳寅). Chin. Phys. B, 2021, 30(10): 107301.
[9] Evidence for topological superconductivity: Topological edge states in Bi2Te3/FeTe heterostructure
Bin Guo(郭斌), Kai-Ge Shi(师凯歌), Hai-Lang Qin(秦海浪), Liang Zhou(周良), Wei-Qiang Chen(陈伟强), Fei Ye(叶飞), Jia-Wei Mei(梅佳伟), Hong-Tao He(何洪涛), Tian-Luo Pan(潘天洛), Gan Wang(王干). Chin. Phys. B, 2020, 29(9): 097403.
[10] Symmetry-controlled edge states in graphene-like topological sonic crystal
Zhang-Zhao Yang(杨彰昭), Jin-Heng Chen(陈晋恒), Yao-Yin Peng(彭尧吟), and Xin-Ye Zou(邹欣晔)†. Chin. Phys. B, 2020, 29(10): 104302.
[11] Neutral excitation and bulk gap of fractional quantum Hall liquids in disk geometry
Wu-Qing Yang(杨武庆), Qi Li(李骐), Lin-Peng Yang(杨林鹏), Zi-Xiang Hu(胡自翔). Chin. Phys. B, 2019, 28(6): 067303.
[12] Topological edge states and electronic structures of a 2D topological insulator: Single-bilayer Bi (111)
Gao Chun-Lei (高春雷), Qian Dong (钱冬), Liu Can-Hua (刘灿华), Jia Jin-Feng (贾金锋), Liu Feng (刘锋). Chin. Phys. B, 2013, 22(6): 067304.
No Suggested Reading articles found!