Abstract High-dimensional quantum systems, such as qutrits (quantum three-level systems), have multiple accessible energy levels beyond the two-level qubits. Therefore, qutrits can offer a larger state space to improve the efficiency of quantum computation. Here, we demonstrate a high-fidelity iSWAP-like gate operation on a frequency-tunable superconducting qutrits system. The superconducting quantum system consists of two qutrits that are coupled via a resonator with fixed qutrit-resonator coupling strengths. Through designing the frequency pulse profile and optimizing the parameter values, the gate error can be suppressed below 1.5×10-3. To bear out the feasibility of the proposal, we have conducted our study with experimentally accessible parameters. As the resonator can mediate the interaction between the irrelevant qutrits, the presented approach can also be used to couple multiple qutrits together, providing a good platform for quantum information processing.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12105146 and 12175104), and sponsored by NUPTSF (Grant No. NY220178). S. M. Z. was supported by the National Natural Science Foundation of China (Grant No. 61871234).
Peng Xu(许鹏), Ran Zhang(张然), and Sheng-Mei Zhao(赵生妹) Realization of the iSWAP-like gate among the superconducting qutrits 2023 Chin. Phys. B 32 020306
[1] Feynman R 1982 Int. J. Theor. Phys.21 467 [2] Lloyd S 1996 Science273 1073 [3] DiVincenzo D P 2000 Fortschr. Phys.48 771 [4] Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C and Brien J L 2010 Nature464 45 [5] Monroe C and Kim J 2013 Science339 1164 [6] Bernien H, Schwartz S, Keesling A, Levine H, Omran A, Pichler H, Choi S, Zibrov A, Endres M, Greiner M, Vuletic V and Lukin M 2017 Nature551 579 [7] Liu W Y, Zheng D N and Zhao S P 2018 Chin. Phys. B27 027401 [8] Preskill J 2018 Quantum2 79 [9] Arute F, Arya K, Babbush R, et al. 2019 Nature574 505 [10] Ye Y S, Cao S R, Wu Y L, et al. 2021 Chin. Phys. Lett.38 100301 [11] Xu H K, Liu W Y, Li Z Y, et al. 2021 Chin. Phys. B30 044212 [12] Li S W, Fan D J, Gong M, et al. 2022 Chin. Phys. Lett.39 030302 [13] Barenco A, Bennett C H, Cleve R, DiVincenzo D P, Margolus N, Shor P, Sleator T, Smolin J A and Weinfurter H 1995 Phys. Rev. A52 3457 [14] Vandersypen L M K, Steffen M, Breyta G, Yannoni C S, Sherwood M H and Chuang I L 2001 Nature414 883 [15] Martín-López E, Laing A, Lawson T, Alvarez R, Zhou X Q and Brien J L 2012 Nat. Photonics6 773 [16] Lanyon B P, Weinhold T J, Langford N K, Barbieri M, James D F V, Gilchrist A and White A G 2007 Phys. Rev. Lett.99 250505 [17] He K Y, Geng X, Huang R T, Liu J S and Chen W 2021 Chin. Phys. B30 080304 [18] Chuang I L and Yamamoto Y 1996 Phys. Rev. Lett.76 4281 [19] Barenco A, Berthiaume A, Deutsch D, Ekert A, Jozsa R and Macchiavello C 1997 SIAM J. Comput.26 1541 [20] Cory D G, Price M D, Maas W, Knill E, Laflamme R, Zurek W H, Havel T F and Somaroo S S 1998 Phys. Rev. Lett.81 2152 [21] Schindler P, Barreiro J T, Monz T, Nebendahl V, Nigg D, Chwalla M, Hennrich M and Blatt R 2011 Science332 1059 [22] Buhrman H, Cleve R, Watrous J and Wolf R D 2001 Phys. Rev. Lett.87 167902 [23] Horn R T, Babichev S A, Marzlin K P, Lvovsky A I and Sanders B C 2005 Phys. Rev. Lett.95 150502 [24] Gottesman D and Chuang I 2001 arXiv preprint quant-ph/0105032 [25] Blok M S, Ramasesh V V, Schuster T, Brien O K, Kreikebaum J M, Dahlen D, Morvan A, Yoshida B, Yao N Y and Siddiqi I 2021 Phys. Rev. X11 021010 [26] Luo M and Wang X 2014 Sci. China: Phys. Mech.57 1712 [27] Lanyon B P, Barbieri M, Marcelo P A, Jennewein T, Timothy C R, Kevin J R, Geoff J P, Brien J L, Gilchrist A and White A G 2009 Nat. Phys.5 134 [28] Mallet F, Florian R O, Palacios-Laloy A, Nguyen F, Bertet P, Vion D and Esteve D 2009 Nat. Phys.5 791 [29] Kues M, Reimer C, Roztocki P, et al. 2017 Nature546 622 [30] Neeley M, Ansmann M, Bialczak R C, et al. 2009 Science325 722 [31] DiCarlo L, Chow J M, Gambetta J M, et al. 2009 Nature460 240 [32] Dai K Z, Zhao P, Li M M, Tan X S, Yu H F and Yu Y 2018 Chin. Phys. B27 060305 [33] Campbell E T, Anwar H and Browne D E 2012 Phys. Rev. X2 041021 [34] Bruss D and Macchiavello C 2002 Phys. Rev. Lett.88 127901 [35] Bechmann-Pasquinucci H and Peres A 2000 Phys. Rev. Lett.85 3313 [36] Campbell E T 2014 Phys. Rev. Lett.113 230501 [37] Lucero E, Hofheinz M, Ansmann M, et al. 2008 Phys. Rev. Lett.100 247001 [38] Zhou Z Y, Chu S I and Han S 2002 Phys. Rev. B66 054527 [39] Kis Z and Renzoni F 2002 Phys. Rev. A65 032318 [40] Kis Z and Paspalakis E 2004 Phys. Rev. B69 024510 [41] Xu H K, Song C, Liu W Y, et al. 2016 Nat. Commun.10 1038 [42] Yurtalan M A, Shi J, Kononenko M, Lupascu A and Ashhab S 2020 Phys. Rev. Lett.125 180504 [43] Wu X, Tomarken S L, Petersson N A, Martinez L A, Rosen Y J and DuBois J L 2020 Phys. Rev. Lett.125 170502 [44] Morvan A, Ramasesh V V, Blok M S, et al. 2021 Phys. Rev. Lett.126 210504 [45] Chow J M, Gambetta J M, Tornberg L, et al. 2009 Phys. Rev. Lett.102 090502 [46] Chow J M, DiCarlo L, Gambetta J M, Motzoi F, Frunzio L, Girvin S M and Schoelkopf R J 2010 Phys. Rev. A82 040305 [47] Leung N, Abdelhafez M, Koch J and Schuster D 2017 Phys. Rev. A95 042318 [48] Abdelhafez M, Schuster D I and Koch J 2019 Phys. Rev. A99 052327 [49] Koch J, Yu T M, Gambetta J, Houck A A, Schuster D I, Majer J, Blais A, Devoret M H, Girvin S M and Schoelkopf R J 2007 Phys. Rev. A76 042319 [50] Schreier J A, Houck A A, Koch J, et al. 2008 Phys. Rev. B77 180502 [51] Zagoskin A M, Ashhab S, Johansson J R and Nori F 2006 Phys. Rev. Lett.97 077001 [52] Tanamoto T, Maruyama K, Liu Y X, Hu X and Nori F 2008 Phys. Rev. A78 062313 [53] Tanamoto T, Liu Y X, Hu X and Nori F 2009 Phys. Rev. Lett.102 100501 [54] Zhao P, Xu P, Lan D, Chu J, Tan X S, Yu H F and Yu Y 2020 Phys. Rev. Lett.125 200503 [55] Ku J, Xu X X, Brink M, McKay D C, Hertzberg J B, Ansari M H and Plourde L T 2020 Phys. Rev. Lett.125 200504 [56] You J Q, Hu X, Ashhab S and Nori F 2007 Phys. Rev. B75 140515 [57] Steffen M, Kumar S, DiVincenzo D P, Rozen J R, Keefe G A, Rothwell M B and Ketchen M B 2010 Phys. Rev. Lett.105 100502 [58] Yan F, Gustavsson S, Kamal A, et al. 2016 Nat. Commun.7 12964 [59] Bialczak R C, Ansmann M, Hofheinz M, et al. 2010 Nat. Phys.6 409 [60] Blais A, Gambetta J, Wallraff A, Schuster D I, Girvin S M, Devoret M H and Schoelkopf R J 2007 Phys. Rev. A75 032329 [61] Zhao P, Tan X, Yu H, Zhu S L and Yu Y 2017 Phys. Rev. A95 063848 [62] Zhao P, Tan X, Yu H, Zhu S L and Yu Y 2017 Phys. Rev. A96 043833 [63] Alexanian M and Bose S K 1995 Phys. Rev. A52 2218 [64] Blais A, Huang R S, Wallraff A, Girvin S M and Schoelkopf R J 2004 Phys. Rev. A69 062320 [65] Zhao P, Xu P, Lan D, Tan X S, Yu H F and Yu Y 2020 Phys. Rev. Appl.14 064016 [66] Ghosh J, Galiautdinov A, Zhou Z, Korotkov A N, Martinis J M and Geller M R 2013 Phys. Rev. A87 022309 [67] Barends R, Quintana C M, Petukhov A G, et al. 2019 Phys. Rev. Lett.123 210501 [68] Barends R, Kelly J, Megrant A, et al. 2014 Nature508 500 [69] Pedersen L H, Moller N M and Molmer K 2007 Phys. Lett. A367 47 [70] Zahedinejad E, Ghosh J and Sanders B C 2016 Phys. Rev. Appl.6 054005 [71] Barnes E, Arenz C, Pitchford A and Economou S E 2017 Phys. Rev. B96 024504 [72] Wang C L, Li X G, Xu H K, et al. 2022 NPJ Quantum Inform.8 3 [73] Place A P M, Rodgers L V H, Mundada P, et al. 2021 Nat. Commun.12 1779
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.