|
Special Issue:
SPECIAL TOPIC — Advanced magnonics
|
| SPECIAL TOPIC — Advanced magnonics |
Prev
Next
|
|
|
Temperature and angle dependence of magnetic damping in manganite thin films |
| Jinghua Ren(任京华)1,2,†, Yuelin Zhang(张跃林)1,2,†,‡, Miming Cai(蔡米铭)1,2,†, Yuhan Li(李语涵)1,2, Mingming Li(李明明)3, Tianqi Wang(王天琦)1,2, Dekun Shen(沈德坤)1,2, Hongyu Zhou(周鸿渝)1,2, Xiangwei Zhu(朱祥维)4, and Jinxing Zhang(张金星)1,2,§ |
1 School of Physics and Astronomy, Beijing Normal University, Beijing 100875, China; 2 Key Laboratory of Multiscale Spin Physics, Ministry of Education, Beijing 10087, China; 3 School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China; 4 School of Electronics and Communication Engineering, Sun Yat-Sen University, Shenzhen 518107, China |
|
|
|
|
Abstract Magnonics and magnonic materials have attracted widespread interest in the spintronics community and demonstrate potential for applications in the next generation of information technology. Recent advances in manganite thin films highlight their promise for magnonics, in which enhanced film quality and strain control of spin and electronic structures play a crucial role in reducing magnetic damping. Here, we report the fabrication of La$_{0.67}$Sr$_{0.33}$MnO$_{3}$ thin films of varying quality via pulsed laser deposition. The quality of epitaxial films is characterized using atomic force microscopy and x-ray diffraction. A pronounced fourfold anisotropy in the magnetic damping (with a ratio of about 150%) is observed, where the minimum damping occurs along the [110] crystalline orientation. Notably, improved sample quality significantly reduces the magnetic damping at low temperatures. The highest-quality sample, featuring atomic-scale terraces, exhibits a magnetic damping of $\sim 2.5\times 10^{-3}$ at 5 K. Our results not only demonstrate effective reduction of low-temperature magnetic damping in high-quality correlated oxide systems but also provides a strategy and material platform for exploring novel quantum phenomena and for designing low-temperature magnonic devices.
|
Received: 31 March 2025
Revised: 13 May 2025
Accepted manuscript online: 04 June 2025
|
|
PACS:
|
75.30.Ds
|
(Spin waves)
|
| |
76.50.+g
|
(Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance)
|
| |
31.15.aq
|
(Strongly correlated electron systems: generalized tight-binding method)
|
|
| Fund: This work was supported by the National Key Research and Development Program of China (Grant Nos. 2023YFA1406500, J.Z.; 2021YFA0718700, J.Z.), the National Natural Science Foundation of China (Grant Nos. T2350005, J.Z.; 12404119, Y.Z.; 52225205, J.Z.), the Beijing Natural Science Foundation (Grant No. Z240008, J.Z.), and the Fundamental Research Funds for the Central Universities (Y.Z. and J.Z.). |
Corresponding Authors:
Yuelin Zhang, Jinxing Zhang
E-mail: yuelin.zhang@bnu.edu.cn;jxzhang@bnu.edu.cn
|
Cite this article:
Jinghua Ren(任京华), Yuelin Zhang(张跃林), Miming Cai(蔡米铭), Yuhan Li(李语涵), Mingming Li(李明明), Tianqi Wang(王天琦), Dekun Shen(沈德坤), Hongyu Zhou(周鸿渝), Xiangwei Zhu(朱祥维), and Jinxing Zhang(张金星) Temperature and angle dependence of magnetic damping in manganite thin films 2025 Chin. Phys. B 34 107504
|
[1] Kuanr B K, Veerakumar V, Kuanr A V, Camley R E and Celinski Z 2009 IEEE Trans. Magn. 45 4015 [2] Lenk B, Ulrichs H, Garbs F and Münzenberg M 2011 Phys. Rep. 507 107 [3] Flebus B, Grundler D, Rana B, et al. 2024 J. Phys. Condens. Matter 36 363501 [4] Zhang X, Wang Y, Chang Y, Wang H, Rong J and Yun G 2024 Chin. Phys. B 33 097601 [5] Lim Z S, Jani H, Venkatesan T and Ariando A 2021 MRS Bull. 46 1053 [6] Zhang Y, Chen J, Zhang J and Yu H 2022 Appl. Phys. Rev. 9 041312 [7] Jin S, Tiefel T H, McCormack M, Fastnacht R A, Ramesh R and Chen L H 1994 Science 264 413 [8] Liao Z, Huijben M, Zhong Z, Gauquelin N, Macke S, Green R J, Van Aert S, Verbeeck J, Van Tendeloo G, Held K, Sawatzky G A, Koster G and Rijnders G 2016 Nat. Mater. 15 425 [9] Urushibara A, Moritomo Y, Arima T, Asamitsu A, Kido G and Tokura Y 1995 Phys. Rev. B 51 14103 [10] Yu X, Tokunaga Y, Taguchi Y and Tokura Y 2017 Adv. Mater. 29 1603958 [11] Zhang Y, Liu J, Dong Y, Wu S, Zhang J, Wang J, Lu J, Rückriegel A, Wang H, Duine R, Yu H, Luo Z, Shen K and Zhang J 2021 Phys. Rev. Lett. 127 117204 [12] Park J H, Vescovo E, Kim H J, Kwon C, Ramesh R and Venkatesan T 1998 Nature 392 794 [13] Bowen M, Bibes M, Barthélémy A, Contour J P, Anane A, Lemaître Y and Fert A 2003 Appl. Phys. Lett. 82 233 [14] Wahlstrom E, Macia F, Boschker J E, Monsen A, Nordblad P, Mathieu R, Kent A D and Tybell T 2017 New J. Phys. 19 063002 [15] Liu C, Wu S, Zhang J, Chen J, Ding J, Ma J, Zhang Y, Sun Y, Tu S, Wang H, Liu P, Li C, Jiang Y, Gao P, Yu D, Xiao J, Duine R, Wu M, Nan C W, Zhang J and Yu H 2019 Nat. Nanotechnol. 14 691 [16] Wang H, Yang Y, Madami M, Wang Y, Du M, Chen J, Zhang Y, Sheng L, Zhang J, Wen C, Zhang Y, Hao S, Yu G, Han X, Gubbiotti G, Shen K, Zhang J and Yu H 2022 Appl. Phys. Lett. 120 192402 [17] Zhang Y, Sheng L, Chen J,Wang J, Zhu Z, Yuan R, Lu J,Wang H, Hao S, Chen P, Yu G, Han X and Yu H 2023 Chin. Phys. B 32 107505 [18] Zhang Y, Qiu L, Chen J,Wu S,Wang H, Malik I A, Cai M,Wu M, Gao P, Hua C, Yu W, Xiao J, Jiang Y, Yu H, Shen K and Zhang J 2025 Nat. Mater. 24 69 [19] Zhang J, Chen M, Chen J, Yamamoto K, Wang H, Hamdi M, Sun Y, Wagner K, He W, Zhang Y, Ma J, Gao P, Han X, Yu D, Maletinsky P, Ansermet J P, Maekawa S, Grundler D, Nan C W and Yu H 2021 Nat. Commun. 12 7258 [20] Wang H, Yang Y, Chen J, Wang J, Jia H, Chen P, Zhang Y, Wan C, Liu S, Yu D, Han X, Ansermet J P, Zhang J and Yu H 2023 Phys. Rev. B 108 144425 [21] Chen J, Yamamoto K, Zhang J, Ma J, Wang H, Sun Y, Chen M, Ma J, Liu S, Gao P, Yu D, Ansermet J P, Nan C W, Maekawa S and Yu H 2023 Phys. Rev. Appl. 19 024046 [22] Lee H K, Barsukov I, Swartz A G, Kim B, Yang L, Hwang H Y and Krivorotov I N 2016 AIP Adv. 6 055212 [23] Luo G Y, Lin J G, Chiang W C and Chang C R 2017 Sci. Rep. 7 6612 [24] Wahler M, Homonnay N, Richter T, Müller A, Eisenschmidt C, Fuhrmann B and Schmidt G 2016 Sci. Rep. 6 28727 [25] Sanchez-Manzano D, Mesoraca S, Cuellar F A, et al. 2022 Nat. Mater. 21 188 [26] Yuan H Y, Cao Y, Kamra A, Duine R A and Yan P 2022 Phys. Rep. 965 1 [27] Boschker H, Mathews M, Houwman E P, Nishikawa H, Vailionis A, Koster G, Rijnders G and Blank D H A 2009 Phys. Rev. B 79 214425 [28] Qin Q, He S, Song W, Yang P, Wu Q, Feng Y P and Chen J 2017 Appl. Phys. Lett. 110 112401 [29] Rezende S M 2020 Fundamentals of Magnonics (Springer, Chambridge) p. 1 [30] Khodadadi B, Rai A, Sapkota A, Srivastava A, Nepal B, Lim Y, Smith D A, Mewes C, Budhathoki S, Hauser A J, Gao M, Li J F, Viehland D D, Jiang Z, Heremans J J, Balachandran P V, Mewes T and Emori S 2020 Phys. Rev. Lett. 124 157201 [31] Conca A, Niesen A, Reiss G and Hillebrands B 2019 AIP Adv. 9 085205 [32] Chen J R, Gong Y T, Lu X Y, Zhang C Y, Hu Y, Wang M Z, Shi Z, Fu S, Cai H L, Liu R B, Yuan Y, Lu Y, Liu T Y, You B, Xu Y B and Du J 2023 Chin. Phys. Lett. 40 047501 [33] Zhan J, Wang Y, Wang X, Zhang H, Zhu S, Zhang L, Tao L, Sui Y, He W, Wan C, Han X, Belotelov V I and Song B 2024 Chin. Phys. B 33 107505 [34] Li Y, Zeng F, Zhang S S L, Shin H, Saglam H, Karakas V, Ozatay O, Pearson J E, Heinonen O G, Wu Y, Hoffmann A and Zhang W 2019 Phys. Rev. Lett. 122 117203 [35] Wang R, Wang W, Li Z, Gao Q, Wang J, Xu Y, Yan P, Zhang X, Zhang Y, Xu Y, Liu R and He L 2023 Adv. Electron. Mater. 9 2300049 [36] Xu H, Chen H, Zeng F, Xu J, Shen X and Wu Y 2023 Phys. Rev. Appl. 19 014056 [37] Nguyen T H T, Park J, Ha J H, Lee S, Nguyen V Q, Lee N J, Park B G, Cho S, Hong J I and Kim S 2024 Phys. Rev. Mater. 8 L041401 [38] Xia H, Zhao Z R, Zeng F L, Zhao H C, Shi J Y, Zheng Z, Shen X, He J, Ni G,Wu Y Z, Chen L Y and Zhao H B 2021 Phys. Rev. B 104 024404 [39] Wang Y, Fan X, Feng X, Gao X, Ke Y, Yao J, Guo M, Wang T, Shen L, Liu M, Xue D and Fan X 2023 Appl. Phys. Lett. 123 112403 [40] Haspot V, Noël P, Attané J P, Vila L, Bibes M, Anane A and Barthélémy A 2022 Phys. Rev. Mater. 6 024030 [41] Jermain C L, Aradhya S V, Reynolds N D, Buhrman R A, Brangham J T, Page M R, Hammel P C, Yang F Y and Ralph D C 2017 Phys. Rev. B 95 174411 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|