CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Magnetic dynamics of two-dimensional itinerant ferromagnet Fe3GeTe2 |
Lijun Ni(倪丽君)1, Zhendong Chen(陈振东)1,5, Wei Li(李威)1, Xianyang Lu(陆显扬)1, Yu Yan(严羽)1, Longlong Zhang(张龙龙)1, Chunjie Yan(晏春杰)2, Yang Chen(陈阳)2, Yaoyu Gu(顾耀玉)2, Yao Li(黎遥)1, Rong Zhang(张荣)1, Ya Zhai(翟亚)3, Ronghua Liu(刘荣华)2,†, Yi Yang(杨燚)1,‡, and Yongbing Xu(徐永兵)1,4,§ |
1 Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; 2 Jiangsu Provincial Key Laboratory for Nanotechnology, School of Physics, Nanjing University, Nanjing 210093, China; 3 Department of Physics, Southeast University, Nanjing 211189, China; 4 York-Nanjing Joint Centre for Spintronics and NanoEngineering, Department of Electronic Engineering, University of York, York YO10 5DD, United Kingdom; 5 Jiangsu Key Laboratory of Opto-Electronic Technology, Center for Quantum Transport and Thermal Energy Science, School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China |
|
|
Abstract Among the layered two-dimensional ferromagnetic materials (2D FMs), due to a relatively high TC, the van der Waals (vdW) Fe3GeTe2 (FGT) crystal is of great importance for investigating its distinct magnetic properties. Here, we have carried out static and dynamic magnetization measurements of the FGT crystal with a Curie temperature TC ≈ 204 K. The M-H hysteresis loops with in-plane and out-of-plane orientations show that FGT has a strong perpendicular magnetic anisotropy with the easy axis along its c-axis. Moreover, we have calculated the uniaxial magnetic anisotropy constant (K1) from the SQUID measurements. The dynamic magnetic properties of FGT have been probed by utilizing the high sensitivity electron-spin-resonance (ESR) spectrometer at cryogenic temperatures. Based on an approximation of single magnetic domain mode, the K1 and the effective damping constant (αeff) have also been determined from the out-of-plane angular dependence of ferromagnetic resonance (FMR) spectra obtained at the temperature range of 185 K to TC. We have found large magnetic damping with the effective damping constant αeff~ 0.58 along with a broad linewidth (ΔHpp> 1000 Oe at 9.48 GHz, H||c-axis). Our results provide useful dynamics information for the development of FGT-based spintronic devices.
|
Received: 13 May 2021
Revised: 17 June 2021
Accepted manuscript online: 24 June 2021
|
PACS:
|
75.50.-y
|
(Studies of specific magnetic materials)
|
|
76.50.+g
|
(Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance)
|
|
75.30.Gw
|
(Magnetic anisotropy)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0300803), the National Natural Science Foundation of China (Grant Nos. 11774150, 12074178, 61427812, 11774160, 61805116, and 61271077), and the Natural Science Foundation of Jiangsu Province of China (Grant Nos. BK20192006, BK20180056, and BK20200307). |
Corresponding Authors:
Ronghua Liu, Yi Yang, Yongbing Xu
E-mail: rhliu@nju.edu.cn;malab@nju.edu.cn;ybxu@nju.edu.cn
|
Cite this article:
Lijun Ni(倪丽君), Zhendong Chen(陈振东), Wei Li(李威), Xianyang Lu(陆显扬), Yu Yan(严羽), Longlong Zhang(张龙龙), Chunjie Yan(晏春杰), Yang Chen(陈阳), Yaoyu Gu(顾耀玉), Yao Li(黎遥), Rong Zhang(张荣), Ya Zhai(翟亚), Ronghua Liu(刘荣华), Yi Yang(杨燚), and Yongbing Xu(徐永兵) Magnetic dynamics of two-dimensional itinerant ferromagnet Fe3GeTe2 2021 Chin. Phys. B 30 097501
|
[1] Chhowalla M, Shin H S, Eda G, Li L J, Loh K P and Zhang H 2013 Nat. Chem. 5 263 [2] Geim A K and Grigorieva I V 2013 Nature 499 419 [3] Jatiyanon K, Tang I M and Soodchomshom B 2016 Chin. Phys. B 25 078104 [4] Bhimanapati G R, Z. Lin, Meunier V, Jung Y, Cha J, Das S, Xiao D, Son Y, Strano M S, Cooper V R, Liang L B, Louie S G, Ringe E, Zhou W, Kim S S, Naik R R, Sumpter B G, Terrones H, Xia F N, Wang Y L, Zhu J, Akinwande D, Alem N, Schuller H A, Schaak R E, Terrones M, and Robinson J A 2015 ACS Nano 9 11509 [5] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár S, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science 294 1488 [6] Li Q Y, Zhang P H, Li H T, Chen L N, Zhou K Y, Yan C J, Li L Y, Xu Y B, Zhang W X, Liu B, Meng H, Liu R H and Du Y W 2021 Chin. Phys. B 30 047504 [7] Žutić I, Fabian J and Das Sarma S 2004 Rev. Mod. Phys. 76 323 [8] Fu Q W, Li Y, Chen L N, Ma F S, Li H T, Xu Y B, Liu B, Liu R H and Du Y W 2020 Chin. Phys. Lett. 37 087503 [9] Zhang X, Zhao Y L, Song Q, Jia S, Shi J and Han W 2016 Jpn. J. Appl. Phys. 55 033001 [10] Park J G 2016 J. Phys.: Condens. Matter 28 301001 [11] Wang Z, Sapkota D, Taniguchi T, Watanabe K, Mandrus D and Morpurgo A F 2018 Nano Lett. 18 4303 [12] Casto L D, Clune A J, Yokosuk M O, Musfeldt J L, Williams T J, Zhuang H L, Lin M W, Xiao K, Hennig R G, Sales B C, Yan J Q and Mandrus D 2015 APL Mater. 3 041515 [13] Sivadas N, Daniels M W, Swendsen R H, Okamoto S and Xiao D 2015 Phys. Rev. B 91 235425 [14] Williams T J, Aczel A A, Lumsden M D, Nagler S E, Stone M B, Yan J Q and Mandrus D 2015 Phys. Rev. B 92 144404 [15] McGuire M A, Dixit H, Cooper V R and Sales B C 2015 Chem. Mater. 27 612 [16] Zhuang H L, Xie Y, Kent P R C and Ganesh P 2015 Phys. Rev. B 92 035407 [17] Lin G T, Zhuang H L, Luo X, Liu B J, Chen F C, Yan J, Sun Y, Zhou J, Lu W J, Tong P, Sheng Z G, Qu Z, Song W H, Zhu X B and Sun Y P 2017 Phys. Rev. B 95 245212 [18] Tan C, Lee J, Jung S G, Park T, Albarakati S, Partridge J, Field M R, McCulloch D G 2018 Nat. Commun. 9 1554 [19] Deiseroth H -J, Aleksandrov K, Reiner C, Kienle L and Kremer R K 2006 Eur. J. Inorg. Chem. 1561-1567 [20] May A F, Calder S, Cantoni C, Cao H and McGuire M A 2016 Phys. Rev. B 93 014411 [21] Zhu J X, Janoschek M, Chaves D S, Cezar J C, Durakiewicz T, Ronning F, Sassa Y, Mansson M, Scott B L, Wakeham N, Bauer E D and Thompson J D 2016 Phys. Rev. B 93 144404 [22] Liu S S, Yuan X, Zou Y C, Sheng Y, Huang C, Zhang E Z, Ling J W, Liu Y W, Wang W Y, Zhang C, Zou J, Wang K Y and Xiu F X 2017 NPJ 2D Mater. Appl. 1 30 [23] Liu Y, Ivanovski V N and Petrovic C 2017 Phys. Rev. B 96 144429 [24] Yi J Y, Zhuang H L, Zou Q, Wu Z M, Cao G X, Tang S W, Calder S A, Kent P R C, Mandrus D and Gai Z 2017 2D Mater. 4 011005 [25] Liu Y, Stavitski E, Attenkofer K and Petrovic C 2018 Phys. Rev. B 97 165415 [26] Drachuck G, Salman Z, Masters M W, Taufour V, Lamichhane T N, Lin Q S, Straszheim W E, Bud'ko S L and Canfield P C 2018 Phys. Rev. B 98 144434 [27] Tian C K, Wang C, Ji W, Wang J C, Xia T L, Wang L, Liu J J, Zhang H X and Cheng P 2019 Phys. Rev. B 99 184428 [28] León-Brito N, Bauer E D, Ronning F, Thompson J D and Movshovich R 2016 J. Appl. Phys. 120 083903 [29] Mizukami S, Ando Y and Miyazaki T 2002 Phys. Rev. B 66 104413 [30] Zeisner J, Mehlawat K, Alfonsov A, Roslova M, Doert T, Isaeva A, Büchner B and Kataev V 2020 Phys. Rev. Mater. 4 064406 [31] Bhagat S M and Hirst L L 1966 Phys. Rev. 151 401 [32] Fuchs G D, Sankey J C, Pribiag V S, Qian L, Braganca P M, Garcia A G F, Ryan E M, Li Z P, Ozatay O, Ralph D C and Buhrman R A 2007 Appl. Phys. Lett. 91 062507 [33] Khan S, Zollitsch C W, Arroo D M, Cheng H, Verzhbitskiy I, Sud A, Feng Y P, Eda G and Kurebayashi H 2019 Phys. Rev. B 100 134437 [34] Mizukami S, Abe H, Watanabe D, Oogane M, Ando Y and Miyazaki T 2008 Appl. Phys. Express 1 121301 [35] Guo X B, Xi L, Li Y, Han X M, Li D, Wang Z and Zuo Y 2014 Appl. Phys. Lett. 105 072411 [36] Conca A, Papaioannou E T, Klingler S, Greser J, Sebastian T, Leven B, Lösch J and Hillebrands B 2014 Appl. Phys. Lett. 104 182407 [37] Goncalves F J T, Sogo T, Shimamoto Y, Proskurin I, Sinitsyn V E, Kousaka Y, Bostrem I G, Kishine J, Ovchinnikov A S and Togawa Y 2018 Phys. Rev. B 98 144407 [38] Woltersdorf G, Kiessling M, Meyer G, Thiele J U and Back C H 2009 Phys. Rev. Lett. 102 257602 [39] Barati E, Cinal M, Edwards D M and Umerski A 2013 EPJ Web of Conferences 40 18003 [40] Qiu Z Y, Li J, Hou D Z, Arenholz E, N'Diaye A T, Tan A, Uchida K, Sato K, Okamoto S, Tserkovnyak Y, Qiu Z Q and Saitoh E 2016 Nat. Commun. 7 12670 [41] Liu B, Ruan X Z, Wu Z Y, Tu H Q, Du J, Wu J, Lu X Y, He L, Zhang R and Xu Y B 2016 Appl. Phys. Lett. 109 042401 [42] Martín-Rio S, Pomar A, Balcells Ll, Bozzo B, Frontera C and Martínez B 2020 J. Magn. Magn. Mater. 500 166319 [43] Mizukami S, Ando Y and Miyazaki T 2001 Jpn. J. Appl. Phys. 40 580 [44] Lenz K, Kosubek E, Baberschke K, Wende H, Herfort J, Schönherr H P, Ploog K H 2005 Phys. Rev. B 72 144411 [45] Mizukami S, Kubota T, Zhang X M, Naganuma H, Oogane M, Ando Y and Miyazaki T 2011 Jpn. J. Appl. Phys. 50 103003 [46] Yin S, Zhao L, Song C, Huang Y, Gu Y D, Chen R Y, Zhu W X, Sun Y M, Jiang W J, Zhang X Z and Pan F 2021 Chin. Phys. B 30 027505 [47] Azzawi S, Hindmarch A T and Atkinson D 2017 J. Phys. D: Appl. Phys. 50 473001 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|