Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(5): 058502    DOI: 10.1088/1674-1056/ad2d55
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Influence of exchange bias on spin torque ferromagnetic resonance for quantification of spin-orbit torque efficiency

Qian Zhao(赵乾)1, Tengfei Zhang(张腾飞)1, Bin He(何斌)2,3, Zimu Li(李子木)1, Senfu Zhang(张森富)1, Guoqiang Yu(于国强)2,3, Jianbo Wang(王建波)1,4, Qingfang Liu(刘青芳)1, and Jinwu Wei(魏晋武)1,†
1 Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, China;
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;
4 Key Laboratory of Special Functional Materials and Structural Design, Ministry of Education, Lanzhou University, Lanzhou 730000, China
Abstract  Antiferromagnet (AFM)/ferromagnet (FM) heterostructure is a popular system for studying the spin-orbit torque (SOT) of AFMs. However, the interfacial exchange bias field induces that the magnetization in FM layer is noncollinear to the external magnetic field, namely the magnetic moment drag effect, which further influences the characteristic of SOT efficiency. In this work, we study the SOT efficiencies of IrMn/NiFe bilayers with strong interfacial exchange bias by using spin-torque ferromagnetic resonance (ST-FMR) method. A full analysis on the AFM/FM systems with exchange bias is performed, and the angular dependence of magnetization on external magnetic field is determined through the minimum rule of free energy. The ST-FMR results can be well fitted by this model. We obtained the relative accurate SOT efficiency $\xi_{\rm DL} = 0.058$ for the IrMn film. This work provides a useful method to analyze the angular dependence of ST-FMR results and facilitates the accurate measurement of SOT efficiency for the AFM/FM heterostructures with strong exchange bias.
Keywords:  antiferromagnets      spin-orbit torque      exchange bias      spin torque ferromagnetic resonance  
Received:  21 November 2023      Revised:  22 February 2024      Accepted manuscript online:  27 February 2024
PACS:  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
  75.50.Ee (Antiferromagnetics)  
  76.50.+g (Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2021YFB3601300), the National Natural Science Foundation of China (Grant Nos. 52201290, 12074158, and 12174166), and the Fundamental Research Funds for the Central Universities (Grant No. lzujbky-2022-kb01).
Corresponding Authors:  Jinwu Wei     E-mail:  weijw@lzu.edu.cn

Cite this article: 

Qian Zhao(赵乾), Tengfei Zhang(张腾飞), Bin He(何斌), Zimu Li(李子木), Senfu Zhang(张森富), Guoqiang Yu(于国强), Jianbo Wang(王建波), Qingfang Liu(刘青芳), and Jinwu Wei(魏晋武) Influence of exchange bias on spin torque ferromagnetic resonance for quantification of spin-orbit torque efficiency 2024 Chin. Phys. B 33 058502

[1] Baltz V, Manchon A, Tsoi M, Moriyama T, Ono T and Tserkovnyak Y 2018 Rev. Mod. Phys. 90 015005
[2] Manchon A, Zelezn ˇ y J, Miron I M, Jungwirth T, Sinova J, Thiaville A, ′ Garello K and Gambardella P 2019 Rev. Mod. Phys. 91 035004
[3] Zelezn ˇ y J, Wadley P, Olejn ′ ík K, Hoffmann A and Ohno H 2018 Nat. Phys. 14 220
[4] Qiu H, Zhou L, Zhang C, Wu J, Tian Y, Cheng S, Mi S, Zhao H, Zhang Q, Wu D, Jin B, Chen J and Wu P 2021 Nat. Phys. 17 388
[5] Vaidya P, Morley S A, Tol J van, Liu Y, Cheng R, Brataas A, Lederman D and Barco E del 2020 Science 368 160
[6] Mendes J B S, Cunha R O, Santos O A, Ribeiro P R T, Machado F L A, Rodríguez-Suarez R L, Azevedo A and Rezende S M ′ 2014 Phys. Rev. B 89 140406
[7] Ou Y, Shi S, Ralph D C and Buhrman R A 2016 Phys. Rev. B 93 220405
[8] Arana M, Gamino M, Silva E F, Barthem V M T S, Givord D, Azevedo A and Rezende S M 2018 Phys. Rev. B 98 144431
[9] Chen X, Shi S, Shi G, Fan X, Song C, Zhou X, Bai H, Liao L, Zhou Y, Zhang H, Li A, Chen Y, Han X, Jiang S, Zhu Z, Wu H, Wang X, Xue D, Yang H and Pan F 2021 Nat. Mater. 20 800
[10] Saglam H, Rojas-Sanchez J C, Petit S, Hehn M, Zhang W, Pearson J E, Mangin S and Hoffmann A 2018 Phys. Rev. B 98 094407
[11] Yang Y, Xu Y, Zhang X, Wang Y, Zhang S, Li R W, Mirshekarloo M S, Yao K and Wu Y 2016 Phys. Rev. B 93 094402
[12] Zhou J, Wang X, Liu Y, Yu J, Fu H, Liu L, Chen S, Deng J, Lin W, Shu X, Yoong H Y, Hong T, Matsuda M, Yang P, Adams S, Yan B, Han X and Chen J 2019 Sci. Adv. 5 eaau6696
[13] Zhou J, Shu X Y, Liu Y H, Wang X, Lin W N, Chen S H, Liu L, Xie Q D, Hong T, Yang P, Yan B H, Han X F and Chen J S 2020 Phys. Rev. B 101 184403
[14] Bai H, Zhou X F, Zhang H W, Kong W W, Liao L Y, Feng X Y, Chen X Z, You Y F, Zhou Y J, Han L, Zhu W X, Pan F, Fan X L and Song C 2021 Phys. Rev. B 104 104401
[15] Nan T, Quintela C X, Irwin J, Gurung G, Shao D F, Gibbons J, Campbell N, Song K, Choi S Y, Guo L, Johnson R D, Manuel P, Chopdekar R V, Hallsteinsen I, Tybell T, Ryan P J, Kim J W, Choi Y, Radaelli P G, Ralph D C, Tsymbal E Y, Rzchowski M S and Eom C B 2020 Nat. Commun. 11 4671
[16] Hazra B K, Pal B, Jeon J C, Neumann R R, Gobel B, Deniz H, Styervoyedov A, Meyerheim H, Mertig I, Yang S H and Parkin S S P 2023 Nat. Commun. 14 4549
[17] Liang S, Han L, You Y, Bai H, Pan F and Song C 2023 Phys. Rev. B 107 184427
[18] You Y, Bai H, Feng X, Fan X, Han L, Zhou X, Zhou Y, Zhang R, Chen T, Pan F and Song C 2021 Nat. Commun. 12 6524
[19] van den Brink A, Vermijs G, Solignac A, Koo J, Kohlhepp J T, Swagten H J M and Koopmans B 2016 Nat. Commun. 7 10854
[20] Fukami S, Zhang C, DuttaGupta S, Kurenkov A and Ohno H 2016 Nat. Mater. 15 535
[21] Razavi S A, Wu D, Yu G, Lau Y C, Wong K L, Zhu W, He C, Zhang Z, Coey J M D, Stamenov P, Amiri P K and Wang Kang L 2017 Phys. Rev. Appl. 7 024023
[22] Grochot K, Karwacki Ł, Łazarski S, Skowronski W, Kanak J, ′ Powroznik W, Ku ′ swik P, Kowacz M, Stobiecki F and Stobiecki T ′ 2021 Phys. Rev. Appl. 15 014017
[23] Tshitoyan V, Ciccarelli C, Mihai A P, Ali M, Irvine A C, Moore T A, Jungwirth T and Ferguson A J 2015 Phys. Rev. B 92 214406
[24] Zhang W, Jungfleisch M B, Freimuth F, Jiang W, Sklenar J, Pearson J E, Ketterson J B, Mokrousov Y and Hoffmann A 2015 Phys. Rev. B 92 144405
[25] Zhang W, Jungfleisch M B, Jiang W, Pearson J E, Hoffmann A, Freimuth F and Mokrousov Y 2014 Phys. Rev. Lett. 113 196602
[26] Liu L, Moriyama T, Ralph D C and Buhrman R A 2011 Phys. Rev. Lett. 106 036601
[27] Mellnik A R, Lee J S, Richardella A, Grab J L, Mintun P J, Fischer M H, Vaezi A, Manchon A, Kim E A, Samarth N and Ralph D C 2014 Nature 511 449
[28] Wei J, He C, Wang X, Xu H, Liu Y, Guang Y, Wan C, Feng J, Yu G and Han X 2020 Phys. Rev. Appl. 13 034041
[29] Avci C O, Garello K, Gabureac M, Ghosh A, Fuhrer A, Alvarado S F and Gambardella P 2014 Phys. Rev. B 90 224427
[30] Hayashi M, Kim J, Yamanouchi M and Ohno H 2014 Phys. Rev. B 89 144425
[31] Wang X, Tang J, Xia X, He C, Zhang J, Liu Y, Wan C, Fang C, Guo C, Yang W, Guang Y, Zhang X, Xu H, Wei J, Liao M, Lu X, Feng J, Li X, Peng Y, Wei H, Yang R, Shi D, Zhang X, Han Z, Zhang Z, Zhang G, Yu G and Han X 2019 Sci. Adv. 5 eaaw8904
[32] Jungblut R, Coehoorn R, Johnson M T, aan de Stegge J and Reinders A 1994 J. Appl. Phys. 75 6659
[33] Shi Z, Du J and Zhou S M 2014 Chin. Phys. B 23 027503
[34] MacNeill D, Stiehl G M, Guimaraes M H D, Buhrman R A, Park J and Ralph D C 2017 Nat. Phys. 13 300
[35] Okada A, Takeuchi Y, Furuya K, Zhang C, Sato H, Fukami S and Ohno H 2019 Phys. Rev. Appl. 12 014040
[36] Xu H, Wei J, Zhou H, Feng J, Xu T, Du H, He C, Huang Y, Zhang J, Liu Y, Wu H C, Guo C, Wang X, Guang Y, Wei H, Peng Y, Jiang W, Yu G and Han X 2020 Adv. Mater. 32 2000513
[37] Ou Y, Pai C F, Shi S, Ralph D C and Buhrman R A 2016 Phys. Rev. B 94 140414
[38] Arana M, Gamino M, Oliveira A B, Holanda J, Azevedo A, Rezende S M and Rodríguez-Suárez R L 2020 Phys. Rev. B 102 104405
[39] Xi H, Mountfield K R and White R M 2000 J. Appl. Phys. 87 4367
[40] Stiles M D and McMichael R D 1999 Phys. Rev. B 59 3722
[41] Shen Y, Wu Y, Xie H, Li K, Qiu J and Guo Z 2002 J. Appl. Phys. 91 8001
[42] Liu F and Ross C A 2014 J. Appl. Phys. 116 194307
[43] Shao Q, Tang C, Yu G, Navabi A, Wu H, He C, Li J, Upadhyaya P, Zhang P, Razavi S A, He Q, Liu Y, Yang P, Kim S K, Zheng C, Liu Y, Pan L, Lake R K, Han X, Tserkovnyak Y, Shi J and Wang Kang L 2018 Nat. Commun. 9 3612
[44] Zhu L, Ralph D C and Buhrman R A 2019 Phys. Rev. Lett. 123 057203
[45] Wei J, Zhong H, Liu J, Wang X, Meng F, Xu H, Liu Y, Luo X, Zhang Q, Guang Y, Feng J, Zhang J, Yang L, Ge C, Gu L, Jin K, Yu G and Han X 2021 Adv. Funct. Mater. 31 2100380
[46] Heinrich B, Burrowes C, Montoya E, Kardasz B, Girt E, Song Y Y, Sun Y and Wu M 2011 Phys. Rev. Lett. 107 066604
[47] Berger A J, Edwards E R J, Nembach H T, Karis O, Weiler M and Silva T J 2018 Phys. Rev. B 98 024402
[1] Stacking-dependent exchange bias in two-dimensional ferromagnetic/antiferromagnetic bilayers
Huiping Li(李慧平), Shuaiwei Pan(潘帅唯), Zhe Wang(王喆), Bin Xiang(向斌), and Wenguang Zhu(朱文光). Chin. Phys. B, 2024, 33(1): 017504.
[2] Ultrafast antiferromagnet rearrangement in Co/IrMn/CoGd trilayers
Zongxia Guo(郭宗夏), Gregory Malinowski, Pierre Vallobra, Yi Peng(彭懿), Yong Xu(许涌), Stéphane Mangin, Weisheng Zhao(赵巍胜), Michel Hehn, and Boyu Zhang(张博宇). Chin. Phys. B, 2023, 32(8): 087507.
[3] Topological magnetotransport and electrical switching of sputtered antiferromagnetic Ir20Mn80
Danrong Xiong(熊丹荣), Yuhao Jiang(蒋宇昊), Daoqian Zhu(朱道乾), Ao Du(杜奥), Zongxia Guo(郭宗夏), Shiyang Lu(卢世阳), Chunxu Wang(王春旭), Qingtao Xia(夏清涛), Dapeng Zhu(朱大鹏), and Weisheng Zhao(赵巍胜). Chin. Phys. B, 2023, 32(5): 057501.
[4] Spin-orbit torque in perpendicularly magnetized [Pt/Ni] multilayers
Ying Cao(曹颖), Zhicheng Xie(谢志成), Zhiyuan Zhao(赵治源), Yumin Yang(杨雨民), Na Lei(雷娜), Bingfeng Miao(缪冰锋), and Dahai Wei(魏大海). Chin. Phys. B, 2023, 32(10): 107507.
[5] Skyrmion-based logic gates controlled by electric currents in synthetic antiferromagnet
Linlin Li(李林霖), Jia Luo(罗佳), Jing Xia(夏静), Yan Zhou(周艳), Xiaoxi Liu(刘小晰), and Guoping Zhao(赵国平). Chin. Phys. B, 2023, 32(1): 017506.
[6] Enhancement of spin-orbit torque efficiency by tailoring interfacial spin-orbit coupling in Pt-based magnetic multilayers
Wenqiang Wang(王文强), Gengkuan Zhu(朱耿宽), Kaiyuan Zhou(周恺元), Xiang Zhan(战翔), Zui Tao(陶醉), Qingwei Fu(付清为), Like Liang(梁力克), Zishuang Li(李子爽), Lina Chen(陈丽娜), Chunjie Yan(晏春杰), Haotian Li(李浩天), Tiejun Zhou(周铁军), and Ronghua Liu(刘荣华). Chin. Phys. B, 2022, 31(9): 097504.
[7] Perpendicular magnetization and exchange bias in epitaxial NiO/[Ni/Pt]2 multilayers
Lin-Ao Huang(黄林傲), Mei-Yu Wang(王梅雨), Peng Wang(王鹏), Yuan Yuan(袁源), Ruo-Bai Liu(刘若柏), Tian-Yu Liu(刘天宇), Yu Lu(卢羽), Jia-Rui Chen(陈家瑞), Lu-Jun Wei(魏陆军), Wei Zhang(张维), Biao You(游彪), Qing-Yu Xu(徐庆宇), and Jun Du(杜军). Chin. Phys. B, 2022, 31(2): 027506.
[8] Switching plasticity in compensated ferrimagnetic multilayers for neuromorphic computing
Weihao Li(李伟浩), Xiukai Lan(兰修凯), Xionghua Liu(刘雄华), Enze Zhang(张恩泽), Yongcheng Deng(邓永城), and Kaiyou Wang(王开友). Chin. Phys. B, 2022, 31(11): 117106.
[9] Enhanced spin-orbit torque efficiency in Pt100-xNix alloy based magnetic bilayer
Congli He(何聪丽), Qingqiang Chen(陈庆强), Shipeng Shen(申世鹏), Jinwu Wei(魏晋武), Hongjun Xu(许洪军), Yunchi Zhao(赵云驰), Guoqiang Yu(于国强), and Shouguo Wang(王守国). Chin. Phys. B, 2021, 30(3): 037503.
[10] Influence of temperature on thermal relaxation of exchange bias field in CoFe/Cu/CoFe/IrMn spin valve
Xian-Jin Qi(祁先进), Ni-Na Yang(杨妮娜), Xiao-Xu Duan(段孝旭), and Xue-Zhu Li(李雪竹). Chin. Phys. B, 2021, 30(10): 107501.
[11] Electrostatic switch of magnetic core-shell in 0-3 type LSMO/PZT composite film
Bo Chen(陈波), Zi-Run Li(李滋润), Chuan-Fu Huang(黄传甫), Yong-Mei Zhang(张永梅). Chin. Phys. B, 2020, 29(9): 097702.
[12] Room-temperature electric control of exchange bias effect in CoO1-δ/Co films using Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (110) substrates
Xin Wen(闻馨), Rui Wu(吴锐), Wen-Yun Yang(杨文云), Chang-Sheng Wang(王常生), Shun-Quan Liu(刘顺荃), Jing-Zhi Han(韩景智), Jin-Bo Yang(杨金波). Chin. Phys. B, 2020, 29(9): 098503.
[13] Giant interface spin-orbit torque in NiFe/Pt bilayers
Shu-Fa Li(李树发), Tao Zhu(朱涛). Chin. Phys. B, 2020, 29(8): 087102.
[14] Perpendicular magnetization switching by large spin—orbit torques from sputtered Bi2Te3
Zhenyi Zheng(郑臻益), Yue Zhang(张悦), Daoqian Zhu(朱道乾), Kun Zhang(张昆), Xueqiang Feng(冯学强), Yu He(何宇), Lei Chen(陈磊), Zhizhong Zhang(张志仲), Dijun Liu(刘迪军), Youguang Zhang(张有光), Pedram Khalili Amiri, Weisheng Zhao(赵巍胜). Chin. Phys. B, 2020, 29(7): 078505.
[15] Role of the spin anisotropy of the interchain interaction in weakly coupled antiferromagnetic Heisenberg chains
Yuchen Fan(樊宇辰), Rong Yu(俞榕). Chin. Phys. B, 2020, 29(5): 057505.
No Suggested Reading articles found!