INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Influence of exchange bias on spin torque ferromagnetic resonance for quantification of spin-orbit torque efficiency |
Qian Zhao(赵乾)1, Tengfei Zhang(张腾飞)1, Bin He(何斌)2,3, Zimu Li(李子木)1, Senfu Zhang(张森富)1, Guoqiang Yu(于国强)2,3, Jianbo Wang(王建波)1,4, Qingfang Liu(刘青芳)1, and Jinwu Wei(魏晋武)1,† |
1 Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, China; 2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 3 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; 4 Key Laboratory of Special Functional Materials and Structural Design, Ministry of Education, Lanzhou University, Lanzhou 730000, China |
|
|
Abstract Antiferromagnet (AFM)/ferromagnet (FM) heterostructure is a popular system for studying the spin-orbit torque (SOT) of AFMs. However, the interfacial exchange bias field induces that the magnetization in FM layer is noncollinear to the external magnetic field, namely the magnetic moment drag effect, which further influences the characteristic of SOT efficiency. In this work, we study the SOT efficiencies of IrMn/NiFe bilayers with strong interfacial exchange bias by using spin-torque ferromagnetic resonance (ST-FMR) method. A full analysis on the AFM/FM systems with exchange bias is performed, and the angular dependence of magnetization on external magnetic field is determined through the minimum rule of free energy. The ST-FMR results can be well fitted by this model. We obtained the relative accurate SOT efficiency $\xi_{\rm DL} = 0.058$ for the IrMn film. This work provides a useful method to analyze the angular dependence of ST-FMR results and facilitates the accurate measurement of SOT efficiency for the AFM/FM heterostructures with strong exchange bias.
|
Received: 21 November 2023
Revised: 22 February 2024
Accepted manuscript online: 27 February 2024
|
PACS:
|
85.75.-d
|
(Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)
|
|
75.50.Ee
|
(Antiferromagnetics)
|
|
76.50.+g
|
(Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2021YFB3601300), the National Natural Science Foundation of China (Grant Nos. 52201290, 12074158, and 12174166), and the Fundamental Research Funds for the Central Universities (Grant No. lzujbky-2022-kb01). |
Corresponding Authors:
Jinwu Wei
E-mail: weijw@lzu.edu.cn
|
Cite this article:
Qian Zhao(赵乾), Tengfei Zhang(张腾飞), Bin He(何斌), Zimu Li(李子木), Senfu Zhang(张森富), Guoqiang Yu(于国强), Jianbo Wang(王建波), Qingfang Liu(刘青芳), and Jinwu Wei(魏晋武) Influence of exchange bias on spin torque ferromagnetic resonance for quantification of spin-orbit torque efficiency 2024 Chin. Phys. B 33 058502
|
[1] Baltz V, Manchon A, Tsoi M, Moriyama T, Ono T and Tserkovnyak Y 2018 Rev. Mod. Phys. 90 015005 [2] Manchon A, Zelezn ˇ y J, Miron I M, Jungwirth T, Sinova J, Thiaville A, ′ Garello K and Gambardella P 2019 Rev. Mod. Phys. 91 035004 [3] Zelezn ˇ y J, Wadley P, Olejn ′ ík K, Hoffmann A and Ohno H 2018 Nat. Phys. 14 220 [4] Qiu H, Zhou L, Zhang C, Wu J, Tian Y, Cheng S, Mi S, Zhao H, Zhang Q, Wu D, Jin B, Chen J and Wu P 2021 Nat. Phys. 17 388 [5] Vaidya P, Morley S A, Tol J van, Liu Y, Cheng R, Brataas A, Lederman D and Barco E del 2020 Science 368 160 [6] Mendes J B S, Cunha R O, Santos O A, Ribeiro P R T, Machado F L A, Rodríguez-Suarez R L, Azevedo A and Rezende S M ′ 2014 Phys. Rev. B 89 140406 [7] Ou Y, Shi S, Ralph D C and Buhrman R A 2016 Phys. Rev. B 93 220405 [8] Arana M, Gamino M, Silva E F, Barthem V M T S, Givord D, Azevedo A and Rezende S M 2018 Phys. Rev. B 98 144431 [9] Chen X, Shi S, Shi G, Fan X, Song C, Zhou X, Bai H, Liao L, Zhou Y, Zhang H, Li A, Chen Y, Han X, Jiang S, Zhu Z, Wu H, Wang X, Xue D, Yang H and Pan F 2021 Nat. Mater. 20 800 [10] Saglam H, Rojas-Sanchez J C, Petit S, Hehn M, Zhang W, Pearson J E, Mangin S and Hoffmann A 2018 Phys. Rev. B 98 094407 [11] Yang Y, Xu Y, Zhang X, Wang Y, Zhang S, Li R W, Mirshekarloo M S, Yao K and Wu Y 2016 Phys. Rev. B 93 094402 [12] Zhou J, Wang X, Liu Y, Yu J, Fu H, Liu L, Chen S, Deng J, Lin W, Shu X, Yoong H Y, Hong T, Matsuda M, Yang P, Adams S, Yan B, Han X and Chen J 2019 Sci. Adv. 5 eaau6696 [13] Zhou J, Shu X Y, Liu Y H, Wang X, Lin W N, Chen S H, Liu L, Xie Q D, Hong T, Yang P, Yan B H, Han X F and Chen J S 2020 Phys. Rev. B 101 184403 [14] Bai H, Zhou X F, Zhang H W, Kong W W, Liao L Y, Feng X Y, Chen X Z, You Y F, Zhou Y J, Han L, Zhu W X, Pan F, Fan X L and Song C 2021 Phys. Rev. B 104 104401 [15] Nan T, Quintela C X, Irwin J, Gurung G, Shao D F, Gibbons J, Campbell N, Song K, Choi S Y, Guo L, Johnson R D, Manuel P, Chopdekar R V, Hallsteinsen I, Tybell T, Ryan P J, Kim J W, Choi Y, Radaelli P G, Ralph D C, Tsymbal E Y, Rzchowski M S and Eom C B 2020 Nat. Commun. 11 4671 [16] Hazra B K, Pal B, Jeon J C, Neumann R R, Gobel B, Deniz H, Styervoyedov A, Meyerheim H, Mertig I, Yang S H and Parkin S S P 2023 Nat. Commun. 14 4549 [17] Liang S, Han L, You Y, Bai H, Pan F and Song C 2023 Phys. Rev. B 107 184427 [18] You Y, Bai H, Feng X, Fan X, Han L, Zhou X, Zhou Y, Zhang R, Chen T, Pan F and Song C 2021 Nat. Commun. 12 6524 [19] van den Brink A, Vermijs G, Solignac A, Koo J, Kohlhepp J T, Swagten H J M and Koopmans B 2016 Nat. Commun. 7 10854 [20] Fukami S, Zhang C, DuttaGupta S, Kurenkov A and Ohno H 2016 Nat. Mater. 15 535 [21] Razavi S A, Wu D, Yu G, Lau Y C, Wong K L, Zhu W, He C, Zhang Z, Coey J M D, Stamenov P, Amiri P K and Wang Kang L 2017 Phys. Rev. Appl. 7 024023 [22] Grochot K, Karwacki Ł, Łazarski S, Skowronski W, Kanak J, ′ Powroznik W, Ku ′ swik P, Kowacz M, Stobiecki F and Stobiecki T ′ 2021 Phys. Rev. Appl. 15 014017 [23] Tshitoyan V, Ciccarelli C, Mihai A P, Ali M, Irvine A C, Moore T A, Jungwirth T and Ferguson A J 2015 Phys. Rev. B 92 214406 [24] Zhang W, Jungfleisch M B, Freimuth F, Jiang W, Sklenar J, Pearson J E, Ketterson J B, Mokrousov Y and Hoffmann A 2015 Phys. Rev. B 92 144405 [25] Zhang W, Jungfleisch M B, Jiang W, Pearson J E, Hoffmann A, Freimuth F and Mokrousov Y 2014 Phys. Rev. Lett. 113 196602 [26] Liu L, Moriyama T, Ralph D C and Buhrman R A 2011 Phys. Rev. Lett. 106 036601 [27] Mellnik A R, Lee J S, Richardella A, Grab J L, Mintun P J, Fischer M H, Vaezi A, Manchon A, Kim E A, Samarth N and Ralph D C 2014 Nature 511 449 [28] Wei J, He C, Wang X, Xu H, Liu Y, Guang Y, Wan C, Feng J, Yu G and Han X 2020 Phys. Rev. Appl. 13 034041 [29] Avci C O, Garello K, Gabureac M, Ghosh A, Fuhrer A, Alvarado S F and Gambardella P 2014 Phys. Rev. B 90 224427 [30] Hayashi M, Kim J, Yamanouchi M and Ohno H 2014 Phys. Rev. B 89 144425 [31] Wang X, Tang J, Xia X, He C, Zhang J, Liu Y, Wan C, Fang C, Guo C, Yang W, Guang Y, Zhang X, Xu H, Wei J, Liao M, Lu X, Feng J, Li X, Peng Y, Wei H, Yang R, Shi D, Zhang X, Han Z, Zhang Z, Zhang G, Yu G and Han X 2019 Sci. Adv. 5 eaaw8904 [32] Jungblut R, Coehoorn R, Johnson M T, aan de Stegge J and Reinders A 1994 J. Appl. Phys. 75 6659 [33] Shi Z, Du J and Zhou S M 2014 Chin. Phys. B 23 027503 [34] MacNeill D, Stiehl G M, Guimaraes M H D, Buhrman R A, Park J and Ralph D C 2017 Nat. Phys. 13 300 [35] Okada A, Takeuchi Y, Furuya K, Zhang C, Sato H, Fukami S and Ohno H 2019 Phys. Rev. Appl. 12 014040 [36] Xu H, Wei J, Zhou H, Feng J, Xu T, Du H, He C, Huang Y, Zhang J, Liu Y, Wu H C, Guo C, Wang X, Guang Y, Wei H, Peng Y, Jiang W, Yu G and Han X 2020 Adv. Mater. 32 2000513 [37] Ou Y, Pai C F, Shi S, Ralph D C and Buhrman R A 2016 Phys. Rev. B 94 140414 [38] Arana M, Gamino M, Oliveira A B, Holanda J, Azevedo A, Rezende S M and Rodríguez-Suárez R L 2020 Phys. Rev. B 102 104405 [39] Xi H, Mountfield K R and White R M 2000 J. Appl. Phys. 87 4367 [40] Stiles M D and McMichael R D 1999 Phys. Rev. B 59 3722 [41] Shen Y, Wu Y, Xie H, Li K, Qiu J and Guo Z 2002 J. Appl. Phys. 91 8001 [42] Liu F and Ross C A 2014 J. Appl. Phys. 116 194307 [43] Shao Q, Tang C, Yu G, Navabi A, Wu H, He C, Li J, Upadhyaya P, Zhang P, Razavi S A, He Q, Liu Y, Yang P, Kim S K, Zheng C, Liu Y, Pan L, Lake R K, Han X, Tserkovnyak Y, Shi J and Wang Kang L 2018 Nat. Commun. 9 3612 [44] Zhu L, Ralph D C and Buhrman R A 2019 Phys. Rev. Lett. 123 057203 [45] Wei J, Zhong H, Liu J, Wang X, Meng F, Xu H, Liu Y, Luo X, Zhang Q, Guang Y, Feng J, Zhang J, Yang L, Ge C, Gu L, Jin K, Yu G and Han X 2021 Adv. Funct. Mater. 31 2100380 [46] Heinrich B, Burrowes C, Montoya E, Kardasz B, Girt E, Song Y Y, Sun Y and Wu M 2011 Phys. Rev. Lett. 107 066604 [47] Berger A J, Edwards E R J, Nembach H T, Karis O, Weiler M and Silva T J 2018 Phys. Rev. B 98 024402 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|