Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(10): 107504    DOI: 10.1088/1674-1056/ade06d
Special Issue: SPECIAL TOPIC — Advanced magnonics
SPECIAL TOPIC — Advanced magnonics Prev   Next  

Temperature and angle dependence of magnetic damping in manganite thin films

Jinghua Ren(任京华)1,2,†, Yuelin Zhang(张跃林)1,2,†,‡, Miming Cai(蔡米铭)1,2,†, Yuhan Li(李语涵)1,2, Mingming Li(李明明)3, Tianqi Wang(王天琦)1,2, Dekun Shen(沈德坤)1,2, Hongyu Zhou(周鸿渝)1,2, Xiangwei Zhu(朱祥维)4, and Jinxing Zhang(张金星)1,2,§
1 School of Physics and Astronomy, Beijing Normal University, Beijing 100875, China;
2 Key Laboratory of Multiscale Spin Physics, Ministry of Education, Beijing 10087, China;
3 School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China;
4 School of Electronics and Communication Engineering, Sun Yat-Sen University, Shenzhen 518107, China
Abstract  Magnonics and magnonic materials have attracted widespread interest in the spintronics community and demonstrate potential for applications in the next generation of information technology. Recent advances in manganite thin films highlight their promise for magnonics, in which enhanced film quality and strain control of spin and electronic structures play a crucial role in reducing magnetic damping. Here, we report the fabrication of La$_{0.67}$Sr$_{0.33}$MnO$_{3}$ thin films of varying quality via pulsed laser deposition. The quality of epitaxial films is characterized using atomic force microscopy and x-ray diffraction. A pronounced fourfold anisotropy in the magnetic damping (with a ratio of about 150%) is observed, where the minimum damping occurs along the [110] crystalline orientation. Notably, improved sample quality significantly reduces the magnetic damping at low temperatures. The highest-quality sample, featuring atomic-scale terraces, exhibits a magnetic damping of $\sim 2.5\times 10^{-3}$ at 5 K. Our results not only demonstrate effective reduction of low-temperature magnetic damping in high-quality correlated oxide systems but also provides a strategy and material platform for exploring novel quantum phenomena and for designing low-temperature magnonic devices.
Keywords:  ferromagnetic resonance      correlated manganite thin film      magnetic damping  
Received:  31 March 2025      Revised:  13 May 2025      Accepted manuscript online:  04 June 2025
PACS:  75.30.Ds (Spin waves)  
  76.50.+g (Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance)  
  31.15.aq (Strongly correlated electron systems: generalized tight-binding method)  
Fund: This work was supported by the National Key Research and Development Program of China (Grant Nos. 2023YFA1406500, J.Z.; 2021YFA0718700, J.Z.), the National Natural Science Foundation of China (Grant Nos. T2350005, J.Z.; 12404119, Y.Z.; 52225205, J.Z.), the Beijing Natural Science Foundation (Grant No. Z240008, J.Z.), and the Fundamental Research Funds for the Central Universities (Y.Z. and J.Z.).
Corresponding Authors:  Yuelin Zhang, Jinxing Zhang     E-mail:  yuelin.zhang@bnu.edu.cn;jxzhang@bnu.edu.cn

Cite this article: 

Jinghua Ren(任京华), Yuelin Zhang(张跃林), Miming Cai(蔡米铭), Yuhan Li(李语涵), Mingming Li(李明明), Tianqi Wang(王天琦), Dekun Shen(沈德坤), Hongyu Zhou(周鸿渝), Xiangwei Zhu(朱祥维), and Jinxing Zhang(张金星) Temperature and angle dependence of magnetic damping in manganite thin films 2025 Chin. Phys. B 34 107504

[1] Kuanr B K, Veerakumar V, Kuanr A V, Camley R E and Celinski Z 2009 IEEE Trans. Magn. 45 4015
[2] Lenk B, Ulrichs H, Garbs F and Münzenberg M 2011 Phys. Rep. 507 107
[3] Flebus B, Grundler D, Rana B, et al. 2024 J. Phys. Condens. Matter 36 363501
[4] Zhang X, Wang Y, Chang Y, Wang H, Rong J and Yun G 2024 Chin. Phys. B 33 097601
[5] Lim Z S, Jani H, Venkatesan T and Ariando A 2021 MRS Bull. 46 1053
[6] Zhang Y, Chen J, Zhang J and Yu H 2022 Appl. Phys. Rev. 9 041312
[7] Jin S, Tiefel T H, McCormack M, Fastnacht R A, Ramesh R and Chen L H 1994 Science 264 413
[8] Liao Z, Huijben M, Zhong Z, Gauquelin N, Macke S, Green R J, Van Aert S, Verbeeck J, Van Tendeloo G, Held K, Sawatzky G A, Koster G and Rijnders G 2016 Nat. Mater. 15 425
[9] Urushibara A, Moritomo Y, Arima T, Asamitsu A, Kido G and Tokura Y 1995 Phys. Rev. B 51 14103
[10] Yu X, Tokunaga Y, Taguchi Y and Tokura Y 2017 Adv. Mater. 29 1603958
[11] Zhang Y, Liu J, Dong Y, Wu S, Zhang J, Wang J, Lu J, Rückriegel A, Wang H, Duine R, Yu H, Luo Z, Shen K and Zhang J 2021 Phys. Rev. Lett. 127 117204
[12] Park J H, Vescovo E, Kim H J, Kwon C, Ramesh R and Venkatesan T 1998 Nature 392 794
[13] Bowen M, Bibes M, Barthélémy A, Contour J P, Anane A, Lemaître Y and Fert A 2003 Appl. Phys. Lett. 82 233
[14] Wahlstrom E, Macia F, Boschker J E, Monsen A, Nordblad P, Mathieu R, Kent A D and Tybell T 2017 New J. Phys. 19 063002
[15] Liu C, Wu S, Zhang J, Chen J, Ding J, Ma J, Zhang Y, Sun Y, Tu S, Wang H, Liu P, Li C, Jiang Y, Gao P, Yu D, Xiao J, Duine R, Wu M, Nan C W, Zhang J and Yu H 2019 Nat. Nanotechnol. 14 691
[16] Wang H, Yang Y, Madami M, Wang Y, Du M, Chen J, Zhang Y, Sheng L, Zhang J, Wen C, Zhang Y, Hao S, Yu G, Han X, Gubbiotti G, Shen K, Zhang J and Yu H 2022 Appl. Phys. Lett. 120 192402
[17] Zhang Y, Sheng L, Chen J,Wang J, Zhu Z, Yuan R, Lu J,Wang H, Hao S, Chen P, Yu G, Han X and Yu H 2023 Chin. Phys. B 32 107505
[18] Zhang Y, Qiu L, Chen J,Wu S,Wang H, Malik I A, Cai M,Wu M, Gao P, Hua C, Yu W, Xiao J, Jiang Y, Yu H, Shen K and Zhang J 2025 Nat. Mater. 24 69
[19] Zhang J, Chen M, Chen J, Yamamoto K, Wang H, Hamdi M, Sun Y, Wagner K, He W, Zhang Y, Ma J, Gao P, Han X, Yu D, Maletinsky P, Ansermet J P, Maekawa S, Grundler D, Nan C W and Yu H 2021 Nat. Commun. 12 7258
[20] Wang H, Yang Y, Chen J, Wang J, Jia H, Chen P, Zhang Y, Wan C, Liu S, Yu D, Han X, Ansermet J P, Zhang J and Yu H 2023 Phys. Rev. B 108 144425
[21] Chen J, Yamamoto K, Zhang J, Ma J, Wang H, Sun Y, Chen M, Ma J, Liu S, Gao P, Yu D, Ansermet J P, Nan C W, Maekawa S and Yu H 2023 Phys. Rev. Appl. 19 024046
[22] Lee H K, Barsukov I, Swartz A G, Kim B, Yang L, Hwang H Y and Krivorotov I N 2016 AIP Adv. 6 055212
[23] Luo G Y, Lin J G, Chiang W C and Chang C R 2017 Sci. Rep. 7 6612
[24] Wahler M, Homonnay N, Richter T, Müller A, Eisenschmidt C, Fuhrmann B and Schmidt G 2016 Sci. Rep. 6 28727
[25] Sanchez-Manzano D, Mesoraca S, Cuellar F A, et al. 2022 Nat. Mater. 21 188
[26] Yuan H Y, Cao Y, Kamra A, Duine R A and Yan P 2022 Phys. Rep. 965 1
[27] Boschker H, Mathews M, Houwman E P, Nishikawa H, Vailionis A, Koster G, Rijnders G and Blank D H A 2009 Phys. Rev. B 79 214425
[28] Qin Q, He S, Song W, Yang P, Wu Q, Feng Y P and Chen J 2017 Appl. Phys. Lett. 110 112401
[29] Rezende S M 2020 Fundamentals of Magnonics (Springer, Chambridge) p. 1
[30] Khodadadi B, Rai A, Sapkota A, Srivastava A, Nepal B, Lim Y, Smith D A, Mewes C, Budhathoki S, Hauser A J, Gao M, Li J F, Viehland D D, Jiang Z, Heremans J J, Balachandran P V, Mewes T and Emori S 2020 Phys. Rev. Lett. 124 157201
[31] Conca A, Niesen A, Reiss G and Hillebrands B 2019 AIP Adv. 9 085205
[32] Chen J R, Gong Y T, Lu X Y, Zhang C Y, Hu Y, Wang M Z, Shi Z, Fu S, Cai H L, Liu R B, Yuan Y, Lu Y, Liu T Y, You B, Xu Y B and Du J 2023 Chin. Phys. Lett. 40 047501
[33] Zhan J, Wang Y, Wang X, Zhang H, Zhu S, Zhang L, Tao L, Sui Y, He W, Wan C, Han X, Belotelov V I and Song B 2024 Chin. Phys. B 33 107505
[34] Li Y, Zeng F, Zhang S S L, Shin H, Saglam H, Karakas V, Ozatay O, Pearson J E, Heinonen O G, Wu Y, Hoffmann A and Zhang W 2019 Phys. Rev. Lett. 122 117203
[35] Wang R, Wang W, Li Z, Gao Q, Wang J, Xu Y, Yan P, Zhang X, Zhang Y, Xu Y, Liu R and He L 2023 Adv. Electron. Mater. 9 2300049
[36] Xu H, Chen H, Zeng F, Xu J, Shen X and Wu Y 2023 Phys. Rev. Appl. 19 014056
[37] Nguyen T H T, Park J, Ha J H, Lee S, Nguyen V Q, Lee N J, Park B G, Cho S, Hong J I and Kim S 2024 Phys. Rev. Mater. 8 L041401
[38] Xia H, Zhao Z R, Zeng F L, Zhao H C, Shi J Y, Zheng Z, Shen X, He J, Ni G,Wu Y Z, Chen L Y and Zhao H B 2021 Phys. Rev. B 104 024404
[39] Wang Y, Fan X, Feng X, Gao X, Ke Y, Yao J, Guo M, Wang T, Shen L, Liu M, Xue D and Fan X 2023 Appl. Phys. Lett. 123 112403
[40] Haspot V, Noël P, Attané J P, Vila L, Bibes M, Anane A and Barthélémy A 2022 Phys. Rev. Mater. 6 024030
[41] Jermain C L, Aradhya S V, Reynolds N D, Buhrman R A, Brangham J T, Page M R, Hammel P C, Yang F Y and Ralph D C 2017 Phys. Rev. B 95 174411
[1] Influence of exchange bias on spin torque ferromagnetic resonance for quantification of spin-orbit torque efficiency
Qian Zhao(赵乾), Tengfei Zhang(张腾飞), Bin He(何斌), Zimu Li(李子木), Senfu Zhang(张森富), Guoqiang Yu(于国强), Jianbo Wang(王建波), Qingfang Liu(刘青芳), and Jinwu Wei(魏晋武). Chin. Phys. B, 2024, 33(5): 058502.
[2] Interfacial DMI in Fe/Pt thin films grown on different buffer layers
Wen-Jun Zhang(张文君), Fei Wei(魏菲), Bing Liu(刘冰), Yang Zhou(周阳), Shi-Shou Kang(康仕寿), and Bing Sun(孙兵). Chin. Phys. B, 2024, 33(4): 048501.
[3] Enhancement of spin-orbit torque efficiency by tailoring interfacial spin-orbit coupling in Pt-based magnetic multilayers
Wenqiang Wang(王文强), Gengkuan Zhu(朱耿宽), Kaiyuan Zhou(周恺元), Xiang Zhan(战翔), Zui Tao(陶醉), Qingwei Fu(付清为), Like Liang(梁力克), Zishuang Li(李子爽), Lina Chen(陈丽娜), Chunjie Yan(晏春杰), Haotian Li(李浩天), Tiejun Zhou(周铁军), and Ronghua Liu(刘荣华). Chin. Phys. B, 2022, 31(9): 097504.
[4] Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain
Jun Ren(任军), Junming Li(李军明), Sheng Zhang(张胜), Jun Li(李骏), Wenxia Su(苏文霞), Dunhui Wang(王敦辉), Qingqi Cao(曹庆琪), and Youwei Du(都有为). Chin. Phys. B, 2022, 31(7): 077502.
[5] Enhancement of magnetic and dielectric properties of low temperature sintered NiCuZn ferrite by Bi2O3-CuO additives
Jie Li(李颉), Bing Lu(卢冰), Ying Zhang(张颖), Jian Wu(武剑), Yan Yang(杨燕), Xue-Ning Han(韩雪宁), Dan-Dan Wen(文丹丹), Zheng Liang(梁峥), and Huai-Wu Zhang(张怀武). Chin. Phys. B, 2022, 31(4): 047502.
[6] Gilbert damping in the layered antiferromagnet CrCl3
Xinlin Mi(米锌林), Ledong Wang(王乐栋), Qi Zhang(张琪), Yitong Sun(孙艺彤), Yufeng Tian(田玉峰), Shishen Yan(颜世申), and Lihui Bai(柏利慧). Chin. Phys. B, 2022, 31(2): 027505.
[7] Terahertz magnetic resonance in MnCr2O4 under high magnetic field
Peng Zhang(张朋), Kaibo He(贺凯博), Zheng Wang(王铮), Shile Zhang(张仕乐), Jianming Dai(戴建明), and Fuhai Su(苏付海). Chin. Phys. B, 2022, 31(10): 107502.
[8] Theoretical investigation of ferromagnetic resonance in a ferromagnetic thin film with external stress anisotropy
Jieyu Zhou(周婕妤), Jianhong Rong(荣建红), Huan Wang(王焕), Guohong Yun(云国宏), Yanan Wang(王娅男), and Shufei Zhang(张舒飞). Chin. Phys. B, 2022, 31(1): 017601.
[9] Magnetic dynamics of two-dimensional itinerant ferromagnet Fe3GeTe2
Lijun Ni(倪丽君), Zhendong Chen(陈振东), Wei Li(李威), Xianyang Lu(陆显扬), Yu Yan(严羽), Longlong Zhang(张龙龙), Chunjie Yan(晏春杰), Yang Chen(陈阳), Yaoyu Gu(顾耀玉), Yao Li(黎遥), Rong Zhang(张荣), Ya Zhai(翟亚), Ronghua Liu(刘荣华), Yi Yang(杨燚), and Yongbing Xu(徐永兵). Chin. Phys. B, 2021, 30(9): 097501.
[10] Enhanced spin-orbit torque efficiency in Pt100-xNix alloy based magnetic bilayer
Congli He(何聪丽), Qingqiang Chen(陈庆强), Shipeng Shen(申世鹏), Jinwu Wei(魏晋武), Hongjun Xu(许洪军), Yunchi Zhao(赵云驰), Guoqiang Yu(于国强), and Shouguo Wang(王守国). Chin. Phys. B, 2021, 30(3): 037503.
[11] Effect of interface magnetization depinning on the frequency shift of ferromagnetic and spin wave resonance in YIG/GGG films
Fanqing Lin(林凡庆), Shouheng Zhang(张守珩), Guoxia Zhao(赵国霞), Hongfei Li(李洪飞), Weihua Zong(宗卫华), Shandong Li(李山东). Chin. Phys. B, 2020, 29(6): 067601.
[12] Improvement of high-frequency properties of Co2FeSi Heusler films by ultrathin Ru underlayer
Cuiling Wang(王翠玲), Shouheng Zhang(张守珩), Shandong Li(李山东), Honglei Du(杜洪磊), Guoxia Zhao(赵国霞), Derang Cao(曹德让). Chin. Phys. B, 2020, 29(4): 046202.
[13] Giant anisotropy of magnetic damping and significant in-plane uniaxial magnetic anisotropy in amorphous Co40Fe40B20 films on GaAs(001)
Ji Wang(王佶), Hong-Qing Tu(涂宏庆), Jian Liang(梁健), Ya Zhai(翟亚), Ruo-Bai Liu(刘若柏), Yuan Yuan(袁源), Lin-Ao Huang(黄林傲), Tian-Yu Liu(刘天宇), Bo Liu(刘波)†, Hao Meng(孟皓), Biao You(游彪), Wei Zhang(张维), Yong-Bing Xu(徐永兵), and Jun Du(杜军)‡. Chin. Phys. B, 2020, 29(10): 107503.
[14] The unique magnetic damping enhancement in epitaxial Co2Fe1-xMnxAl films
Shu-Fa Li(李树发), Chu-Yuan Cheng(程樗元), Kang-Kang Meng(孟康康), Chun-Lei Chen(陈春雷). Chin. Phys. B, 2019, 28(9): 097502.
[15] Thickness-dependent magnetic anisotropy in obliquely deposited Fe(001)/Pd thin film bilayers probed by VNA-FMR
Qeemat Gul, Wei He(何为), Yan Li(李岩), Rui Sun(孙瑞), Na Li(李娜), Xu Yang(杨旭), Yang Li(李阳), Zi-Zhao Gong(弓子召), Zong-Kai Xie(谢宗凯), Xiang-Qun Zhang(张向群), Zhao-Hua Cheng(成昭华). Chin. Phys. B, 2019, 28(7): 077502.
No Suggested Reading articles found!