CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
The unique magnetic damping enhancement in epitaxial Co2Fe1-xMnxAl films |
Shu-Fa Li(李树发)1,2, Chu-Yuan Cheng(程樗元)2, Kang-Kang Meng(孟康康)3, Chun-Lei Chen(陈春雷)1 |
1 College of Electronics and Information Engineering, Guangdong Ocean University, Zhanjiang 524000, China;
2 State-Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-Sen University, Guangzhou 510275, China;
3 State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China |
|
|
Abstract Uniform precession dynamics and its magnetic damping are investigated in epitaxial Co2Fe1-xMnxAl films by using the time-resolved magneto-optical Kerr effect under out-of-plane configuration. The decay time of uniform precession mode decreases, and thus the magnetic damping increases with the increase of external field. Moreover, the decay time decreases as x decreases, so that the enhancement of magnetic damping occurs in Fe-rich sample. Furthermore, the decay time decreases as the excitation fluence increases, which drops rapidly at low magnetic field comparing with the slow reduction at high magnetic field. This unique magnetic damping enhancement is attributed to the enhancement of homogeneous magnetization.
|
Received: 12 June 2019
Revised: 24 July 2019
Accepted manuscript online:
|
PACS:
|
75.40.Gb
|
(Dynamic properties?)
|
|
76.50.+g
|
(Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance)
|
|
78.20.Ls
|
(Magneto-optical effects)
|
|
Fund: Project supported by the Natural Science Foundation of Guangdong Province, China (Grant No. 2015A030310003) and the Program for Scientific Research Start-up Funds of Guangdong Ocean University, China. |
Corresponding Authors:
Shu-Fa Li
E-mail: lishufa310@163.com
|
Cite this article:
Shu-Fa Li(李树发), Chu-Yuan Cheng(程樗元), Kang-Kang Meng(孟康康), Chun-Lei Chen(陈春雷) The unique magnetic damping enhancement in epitaxial Co2Fe1-xMnxAl films 2019 Chin. Phys. B 28 097502
|
[1] |
Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1
|
[2] |
Gerrits Th, van den Berg H A M, Hohlfeld J, Bär L and Rasing Th 2002 Nature 418 509
|
[3] |
Schumacher H W, Chappert C, Sousa R C, Freitas P P and Miltat J 2003 Phys. Rev. Lett. 90 17204
|
[4] |
Kiselev S I, Sankey J C, Krivorotov I N, Emley N C, Schoelkopf R J, Buhrman R A and Ralph D C 2003 Nature 425 380
|
[5] |
Kaka S, Pufall M R, Rippard W H, Silva T J, Russek S E and Katine J A 2005 Nature 437 389
|
[6] |
Sukegawa H, Wen Z C, Kondou K, Kasai S, Mitani S and Inomata K 2012 Appl. Phys. Lett. 100 182403
|
[7] |
Sebastian T, Ohdaira Y, Kubota T, Pirro P, Brächer T, Schultheiss K, Serga A A, Naganuma H, Oogane M, Ando Y and Hillebrands B 2012 Appl. Phys. Lett. 100 112402
|
[8] |
Loong L M, Hyun J, Deorani P, Yu C N T, Hirohata A and Yang H 2014 Appl. Phys. Lett. 104 232409
|
[9] |
Kubota T, Tsunegi S, Oogane M, Mizukami S, Miyazaki T, Naganuma H and Ando Y 2009 Appl. Phys. Lett. 94 122504
|
[10] |
Li S F, Cheng C Y, Meng K K and Chen C L 2019 Jpn. J. Appl. Phys. 58 040903
|
[11] |
Mizukami S, Watanabe D, Oogane M, Ando Y, Miura Y, Shirai M and Miyazaki T 2009 J. Appl. Phys. 105 07D306
|
[12] |
Yuan H C, Nie S H, Ma T P, Zhang Z, Chen Z H, Wu Y Z, Zhao J H, Zhao H B and Chen L Y 2014 Appl. Phys. Lett. 105 072413
|
[13] |
Qiao S, Nie S H, Zhao J H, Huo Y, Wu Y Z and Zhang X H 2013 Appl. Phys. Lett. 103 152402
|
[14] |
Liu Y, Shelford L R, Kruglyak V V, Hichen R J, Sakuraba Y, Oogane M, Ando Y and Miyazaki T 2007 J. Appl. Phys. 101 09C106
|
[15] |
Qiao S, Nie S H, Zhao J H and Zhang X H 2014 Appl. Phys. Lett. 105 172406
|
[16] |
Cheng C Y, Meng K K, Li S F, Zhao J H and Lai T S 2013 Appl. Phys. Lett. 103 232406
|
[17] |
Schneider T, Serga A A, Leven B, Hillebrands B, Stamps R and Kostylev M P 2008 Appl. Phys. Lett. 92 022505
|
[18] |
Kuboa T, Hamrle J, Sakuraba Y, Gaier O, Oogane M, Sakuma A, Hillebrands B, Takanashi K and Ando Y 2009 J. Appl. Phys. 106 113907
|
[19] |
Belmeguenai M, Zighem F, Roussigne Y, Cherif S M, Moch P, Westerholt K, Woltersdorf G and Bayreuther G 2009 Phys. Rev. B 79 024419
|
[20] |
Zhu W H, Zhu Z D, Li D, Wu G J, Xi L, Jin Q Y and Zhang Z Z 2019 J. Magn. Magn. Mater. 479 179
|
[21] |
Liu Y, Shelford L R, Kruglyak V V and Hicken R J 2010 Phys. Rev. B 81 094402
|
[22] |
Mizukami S, Watanabe D, Kubota T, Zhang X, Naganuma H, Oogane M, Ando Y and Miyazaki T 2010 Appl. Phys. Express 3 123001
|
[23] |
Lu X Y, Atkinson L J, Kurebanjinag B, Liu B, Li G Q, Wang Y C, Wang J L, Ruan X Z, Wu J, Evans R F L, Lazarow V K, Chantrell R W and Xu Y B 2019 Appl. Phys. Lett. 114 192406
|
[24] |
Meng K K, Wang S L, Xu P F, Chen L, Yan W S and Zhao J H 2010 Appl. Phys. Lett. 97 232506
|
[25] |
Liu X D, Xu Z, Gao R X, Hu H N, Chen Z F, Wang Z X, Du J, Zhou S M and Lai T S 2008 Appl. Phys. Lett. 92 232501
|
[26] |
Tao X D, Wang H L, Miao B F, Sun L, You B, Wu D, Zhang W, Oepen H P, Zhao J H and Ding H F 2016 Sci. Rep. 6 18615
|
[27] |
Li S F, Meng K K, Cheng C Y, Zhao J H and Lai T S 2018 J. Phys.:Condens. Matter 30 485802
|
[28] |
M uller G M and Munzenberg M 2008 Phys. Rev. B 77 020412(R)
|
[29] |
Hamrle J, Blomeier S, Gaier O, Hillebrands B, Schafer R and Jourdan M 2006 J. Appl. Phys. 100 103904
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|