INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Interfacial DMI in Fe/Pt thin films grown on different buffer layers |
Wen-Jun Zhang(张文君)1, Fei Wei(魏菲)2, Bing Liu(刘冰)1, Yang Zhou(周阳)2, Shi-Shou Kang(康仕寿)2,†, and Bing Sun(孙兵)1,‡ |
1 School of Physics and Electronic Information, Weifang University, Weifang 261061, China; 2 School of Physics and State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China |
|
|
Abstract We study the interfacial Dzyaloshinskii—Moriya interactions (i-DMI) of Fe/Pt bilayers grown on Si substrates with MgO, SiO2, or Ta each as a buffer layer on the basis of wave-vector-resolved Brillouin light scattering (BLS) measurement. The obtained i-DMI energy values for Fe/Pt on MgO, Ta, and SiO2 buffer layers are 0.359, 0.321, and 0.274 mJ/m2, respectively. The large i-DMI value observed in Fe/Pt system on the MgO buffer layer can be attributed to the good interfacial quality and the Rshaba effect at the MgO/Fe interface. Moreover, the MgO/Fe/Pt system, benefiting from better sample quality, exhibits a lower damping factor. Furthermore, layer-resolved first-principles calculations are carried out to gain a more in-depth understanding of the origin of the i-DMI in the Fe/Pt system. The results indicate that in the Fe(110)/Pt(111) system, the substantial DMI energy between Fe spins at the interface is related to a significant change in spin—orbit coupling (SOC) energy in the neighboring Pt layer. In contrast, for the MgO(002)/Fe(002) system, both the DMI and its related SOC energy are concentrated at the interfacial Fe layer. Our investigation will provide a valuable insight into the spintronic community in exploring novel devices with chirality dependence.
|
Received: 12 October 2023
Revised: 30 December 2023
Accepted manuscript online: 05 January 2024
|
PACS:
|
75.40.Gb
|
(Dynamic properties?)
|
|
85.75.-d
|
(Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 12074220, 12304151, 12204355, and 12204356) and the Natural Science Foundation of Shandong Province, China (Grant No. ZR2022QA085). |
Corresponding Authors:
Shi-Shou Kang, Bing Sun
E-mail: skang@sdu.edu.cn;wywdsunbing@wfu.edu.cn
|
Cite this article:
Wen-Jun Zhang(张文君), Fei Wei(魏菲), Bing Liu(刘冰), Yang Zhou(周阳), Shi-Shou Kang(康仕寿), and Bing Sun(孙兵) Interfacial DMI in Fe/Pt thin films grown on different buffer layers 2024 Chin. Phys. B 33 048501
|
[1] Dzyaloshinsky I 1958 J. Phys. Chem. Solids 4 241 [2] Moriya T 1960 Phys. Rev. Lett. 4 228 [3] Uchida M, Onose Y, Matsui Y and Tokura Y 2006 Science 311 359 [4] Ferriani P, Bergmann K von, Vedmedenko E Y, Heinze S, Bode M, Heide M, Bihlmayer G, Blügel S and Wiesendanger R 2008 Phys. Rev. Lett. 101 027201 [5] Robertson M, Agostino C J, Chen G, Kang S P, Mascaraque A, Michel E G, Won C, Wu Y, Schmid A K and Liu K 2020 Phys. Rev. B 102 024417 [6] Perini M, Meyer S, Dupé B, Malottki S von, Kubetzka A, Bergmann K von, Wiesendanger R and Heinze S 2018 Phys. Rev. B 97 184425 [7] Jiang W, Upadhyaya P, Zhang W, Yu G, Jungfleisch M B, Fradin F Y, Pearson J E, Tserkovnyak Y, Wang K L, Heinonen O, Velthuis S G E te and Hoffmann A 2015 Science 349 283 [8] Zhang Y, Liu J, Dong Y, Wu S, Zhang J, Wang J, Lu J, Rückriegel A, Wang H, Duine R, Yu H, Luo Z, Shen K and Zhang J 2021 Phys. Rev. Lett. 127 117204 [9] Tang J, Wu Y, Wang W, Kong L, Lv B, Wei W, Zang J, Tian M and Du H 2021 Nat. Nanotechnol. 16 1086 [10] Wu Y, Jiang J and Tang J 2022 Chin. Phys. B 31 077504 [11] Tang J, Kong L, Wang W, Du H and Tian M 2019 Chin. Phys. B 28 087503 [12] Liu C, Jiang J, Zhang C, Wang Q, Zhang H, Zheng D, Li Y, Ma Y, Algaidi H, Gao X, Hou Z, Mi W, Liu J, Qiu Z and Zhang X 2023 Adv. Sci. 10 2303443 [13] Yu G, Upadhyaya P, Li X, Li W, Kim S K, Fan Y, Wong K L, Tserkovnyak Y, Amiri P K and Wang K L 2016 Nano Lett. 16 1981 [14] Tang J, Wu Y, Kong L, Wang W, Chen Y, Wang Y, Soh Y, Xiong Y, Tian M and Du H 2021 National Science Review 8 nwaa200 [15] Belrhazi H and Hafidi M El 2022 Sci. Rep. 12 15225 [16] Wang W, Sheng Y, Zheng Y, Ji Y and Wang K 2022 Adv. Electron. Mater. 8 2200412 [17] Mühlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R and Böni P 2009 Science 323 915 [18] Seki S, Okamura Y, Kondou K, Shibata K, Kubota M, Takagi R, Kagawa F, Kawasaki M, Tatara G, Otani Y and Tokura Y 2016 Phys. Rev. B 93 235131 [19] Iguchi Y, Uemura S, Ueno K and Onose Y 2015 Phys. Rev. B 92 184419 [20] Zakeri K H, Zhang Y, Prokop J, Chuang T H, Sakr N, Tang W X and Kirschner J 2010 Phys. Rev. Lett. 104 137203 [21] Perini M, Meyer S, Dupé B, Malottki S V, Kubetzka A, Bergmann K V, Wiesendanger R and Heinze S 2018 Phys. Rev. B 97 184425 [22] Dmitrienko V E, Ovchinnikova E N, Collins S P, Nisbet G, Beutier G, Kvashnin Y O, Mazurenko V V, Lichtenstein A I and Katsnelson M I 2014 Nat. Phys. 10 202 [23] Balk A L, Kim K W, Pierce D T, Stiles M D, Unguris J and Stavis S M 2017 Phys. Rev. Lett. 119 077205 [24] Gusev N S, Sadovnikov A V, Nikitov S A, Sapozhnikov M V and Udalov O G 2020 Phys. Rev. Lett. 124 157202 [25] Tacchi S, Troncoso R E, Ahlberg M, Gubbiotti G, Madami M, AAerman J and Landeros P 2017 Phys. Rev. Lett. 118 147201 [26] Zhang W, Jiang B, Wang L, Fan Y, Zhang Y, Yu S Y, Han G B, Liu G L, Feng C, Yu G H, Yan S S and Kang S 2019 Phys. Rev. Appl. 12 064031 [27] Ma X, Yu G, Razavi S A, Sasaki S S, Li X, Hao K, Tolbert S H, Wang K L and Li X 2017 Phys. Rev. Lett. 119 027202 [28] Di K, Zhang V L, Lim H S, Ng S C, Kuok M H, Yu J, Yoon J, Qiu X and Yang H 2015 Phys. Rev. Lett. 114 047201 [29] Srivastava T, Schott M, Juge R, et al. 2018 Nano Lett. 18 4871 [30] Kashid V, Schena Timo, Zimmermann B, Mokrousov Y, Blügel S, Shah V and Salunke H G 2014 Phys. Rev. B 90 054412 [31] Zhang W, Chen R, Jiang B, Zhao X, Zhao W, Yan S S, Han G, Yu S, Liu G and Kang S 2021 Nanoscale 13 2665 [32] Kim N H, Han D S, Jung J, Cho J, Kim J S, Swagten H J M and You C Y 2015 Appl. Phys. Lett. 107 142408 [33] Shaw J M, Nembach H T, Silva T J, Russek S E, Geiss R, Jones C, Clark N, Leo T and Smith D J 2009 Phys. Rev. B 80 184419 [34] Damon R W and Eshbach J R 1961 J. Phys. Chem. Solids 19 308 [35] Yang H, Thiaville A, Rohart S, Fert A and Chshiev M 2015 Phys. Rev. Lett. 115 267210 [36] Hillebrands B 1990 Phys. Rev. B 41 530 [37] Chaurasiya A K, Banerjee C, Pan S, Sahoo S, Choudhury S, Sinha J and Barman A 2016 Sci. Rep. 6 32592 [38] Yang H X, Boulle O, Cros V, Fert A and Chshiev M 2018 Sci. Rep. 8 12356 [39] Huo Y, Zeng F L, Zhou C and Wu Y Z 2017 AIP Adv. 7 056024 [40] Oates C J, Ogrin F Y, Lee S L, Riedi P C and Smith G M 2002 J. Appl. Phys. 91 1417 [41] Hallal A, Yang H X, Dieny B and Chshiev M 2013 Phys. Rev. B 88 184423 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|