Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(4): 048501    DOI: 10.1088/1674-1056/ad1b41
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Interfacial DMI in Fe/Pt thin films grown on different buffer layers

Wen-Jun Zhang(张文君)1, Fei Wei(魏菲)2, Bing Liu(刘冰)1, Yang Zhou(周阳)2, Shi-Shou Kang(康仕寿)2,†, and Bing Sun(孙兵)1,‡
1 School of Physics and Electronic Information, Weifang University, Weifang 261061, China;
2 School of Physics and State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
Abstract  We study the interfacial Dzyaloshinskii—Moriya interactions (i-DMI) of Fe/Pt bilayers grown on Si substrates with MgO, SiO2, or Ta each as a buffer layer on the basis of wave-vector-resolved Brillouin light scattering (BLS) measurement. The obtained i-DMI energy values for Fe/Pt on MgO, Ta, and SiO2 buffer layers are 0.359, 0.321, and 0.274 mJ/m2, respectively. The large i-DMI value observed in Fe/Pt system on the MgO buffer layer can be attributed to the good interfacial quality and the Rshaba effect at the MgO/Fe interface. Moreover, the MgO/Fe/Pt system, benefiting from better sample quality, exhibits a lower damping factor. Furthermore, layer-resolved first-principles calculations are carried out to gain a more in-depth understanding of the origin of the i-DMI in the Fe/Pt system. The results indicate that in the Fe(110)/Pt(111) system, the substantial DMI energy between Fe spins at the interface is related to a significant change in spin—orbit coupling (SOC) energy in the neighboring Pt layer. In contrast, for the MgO(002)/Fe(002) system, both the DMI and its related SOC energy are concentrated at the interfacial Fe layer. Our investigation will provide a valuable insight into the spintronic community in exploring novel devices with chirality dependence.
Keywords:  Fe/Pt      i-DMI      BLS      ferromagnetic resonance      magnetic relaxation  
Received:  12 October 2023      Revised:  30 December 2023      Accepted manuscript online:  05 January 2024
PACS:  75.40.Gb (Dynamic properties?)  
  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 12074220, 12304151, 12204355, and 12204356) and the Natural Science Foundation of Shandong Province, China (Grant No. ZR2022QA085).
Corresponding Authors:  Shi-Shou Kang, Bing Sun     E-mail:  skang@sdu.edu.cn;wywdsunbing@wfu.edu.cn

Cite this article: 

Wen-Jun Zhang(张文君), Fei Wei(魏菲), Bing Liu(刘冰), Yang Zhou(周阳), Shi-Shou Kang(康仕寿), and Bing Sun(孙兵) Interfacial DMI in Fe/Pt thin films grown on different buffer layers 2024 Chin. Phys. B 33 048501

[1] Dzyaloshinsky I 1958 J. Phys. Chem. Solids 4 241
[2] Moriya T 1960 Phys. Rev. Lett. 4 228
[3] Uchida M, Onose Y, Matsui Y and Tokura Y 2006 Science 311 359
[4] Ferriani P, Bergmann K von, Vedmedenko E Y, Heinze S, Bode M, Heide M, Bihlmayer G, Blügel S and Wiesendanger R 2008 Phys. Rev. Lett. 101 027201
[5] Robertson M, Agostino C J, Chen G, Kang S P, Mascaraque A, Michel E G, Won C, Wu Y, Schmid A K and Liu K 2020 Phys. Rev. B 102 024417
[6] Perini M, Meyer S, Dupé B, Malottki S von, Kubetzka A, Bergmann K von, Wiesendanger R and Heinze S 2018 Phys. Rev. B 97 184425
[7] Jiang W, Upadhyaya P, Zhang W, Yu G, Jungfleisch M B, Fradin F Y, Pearson J E, Tserkovnyak Y, Wang K L, Heinonen O, Velthuis S G E te and Hoffmann A 2015 Science 349 283
[8] Zhang Y, Liu J, Dong Y, Wu S, Zhang J, Wang J, Lu J, Rückriegel A, Wang H, Duine R, Yu H, Luo Z, Shen K and Zhang J 2021 Phys. Rev. Lett. 127 117204
[9] Tang J, Wu Y, Wang W, Kong L, Lv B, Wei W, Zang J, Tian M and Du H 2021 Nat. Nanotechnol. 16 1086
[10] Wu Y, Jiang J and Tang J 2022 Chin. Phys. B 31 077504
[11] Tang J, Kong L, Wang W, Du H and Tian M 2019 Chin. Phys. B 28 087503
[12] Liu C, Jiang J, Zhang C, Wang Q, Zhang H, Zheng D, Li Y, Ma Y, Algaidi H, Gao X, Hou Z, Mi W, Liu J, Qiu Z and Zhang X 2023 Adv. Sci. 10 2303443
[13] Yu G, Upadhyaya P, Li X, Li W, Kim S K, Fan Y, Wong K L, Tserkovnyak Y, Amiri P K and Wang K L 2016 Nano Lett. 16 1981
[14] Tang J, Wu Y, Kong L, Wang W, Chen Y, Wang Y, Soh Y, Xiong Y, Tian M and Du H 2021 National Science Review 8 nwaa200
[15] Belrhazi H and Hafidi M El 2022 Sci. Rep. 12 15225
[16] Wang W, Sheng Y, Zheng Y, Ji Y and Wang K 2022 Adv. Electron. Mater. 8 2200412
[17] Mühlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R and Böni P 2009 Science 323 915
[18] Seki S, Okamura Y, Kondou K, Shibata K, Kubota M, Takagi R, Kagawa F, Kawasaki M, Tatara G, Otani Y and Tokura Y 2016 Phys. Rev. B 93 235131
[19] Iguchi Y, Uemura S, Ueno K and Onose Y 2015 Phys. Rev. B 92 184419
[20] Zakeri K H, Zhang Y, Prokop J, Chuang T H, Sakr N, Tang W X and Kirschner J 2010 Phys. Rev. Lett. 104 137203
[21] Perini M, Meyer S, Dupé B, Malottki S V, Kubetzka A, Bergmann K V, Wiesendanger R and Heinze S 2018 Phys. Rev. B 97 184425
[22] Dmitrienko V E, Ovchinnikova E N, Collins S P, Nisbet G, Beutier G, Kvashnin Y O, Mazurenko V V, Lichtenstein A I and Katsnelson M I 2014 Nat. Phys. 10 202
[23] Balk A L, Kim K W, Pierce D T, Stiles M D, Unguris J and Stavis S M 2017 Phys. Rev. Lett. 119 077205
[24] Gusev N S, Sadovnikov A V, Nikitov S A, Sapozhnikov M V and Udalov O G 2020 Phys. Rev. Lett. 124 157202
[25] Tacchi S, Troncoso R E, Ahlberg M, Gubbiotti G, Madami M, AAerman J and Landeros P 2017 Phys. Rev. Lett. 118 147201
[26] Zhang W, Jiang B, Wang L, Fan Y, Zhang Y, Yu S Y, Han G B, Liu G L, Feng C, Yu G H, Yan S S and Kang S 2019 Phys. Rev. Appl. 12 064031
[27] Ma X, Yu G, Razavi S A, Sasaki S S, Li X, Hao K, Tolbert S H, Wang K L and Li X 2017 Phys. Rev. Lett. 119 027202
[28] Di K, Zhang V L, Lim H S, Ng S C, Kuok M H, Yu J, Yoon J, Qiu X and Yang H 2015 Phys. Rev. Lett. 114 047201
[29] Srivastava T, Schott M, Juge R, et al. 2018 Nano Lett. 18 4871
[30] Kashid V, Schena Timo, Zimmermann B, Mokrousov Y, Blügel S, Shah V and Salunke H G 2014 Phys. Rev. B 90 054412
[31] Zhang W, Chen R, Jiang B, Zhao X, Zhao W, Yan S S, Han G, Yu S, Liu G and Kang S 2021 Nanoscale 13 2665
[32] Kim N H, Han D S, Jung J, Cho J, Kim J S, Swagten H J M and You C Y 2015 Appl. Phys. Lett. 107 142408
[33] Shaw J M, Nembach H T, Silva T J, Russek S E, Geiss R, Jones C, Clark N, Leo T and Smith D J 2009 Phys. Rev. B 80 184419
[34] Damon R W and Eshbach J R 1961 J. Phys. Chem. Solids 19 308
[35] Yang H, Thiaville A, Rohart S, Fert A and Chshiev M 2015 Phys. Rev. Lett. 115 267210
[36] Hillebrands B 1990 Phys. Rev. B 41 530
[37] Chaurasiya A K, Banerjee C, Pan S, Sahoo S, Choudhury S, Sinha J and Barman A 2016 Sci. Rep. 6 32592
[38] Yang H X, Boulle O, Cros V, Fert A and Chshiev M 2018 Sci. Rep. 8 12356
[39] Huo Y, Zeng F L, Zhou C and Wu Y Z 2017 AIP Adv. 7 056024
[40] Oates C J, Ogrin F Y, Lee S L, Riedi P C and Smith G M 2002 J. Appl. Phys. 91 1417
[41] Hallal A, Yang H X, Dieny B and Chshiev M 2013 Phys. Rev. B 88 184423
[1] Influence of exchange bias on spin torque ferromagnetic resonance for quantification of spin-orbit torque efficiency
Qian Zhao(赵乾), Tengfei Zhang(张腾飞), Bin He(何斌), Zimu Li(李子木), Senfu Zhang(张森富), Guoqiang Yu(于国强), Jianbo Wang(王建波), Qingfang Liu(刘青芳), and Jinwu Wei(魏晋武). Chin. Phys. B, 2024, 33(5): 058502.
[2] Unusual magnetic relaxation in a single-molecule magnet with toroidal magnetic moments
Dan Su(苏丹), Yi-Quan Zhang(张义权), En-Ke Liu(刘恩克), and Yang Sun(孙阳). Chin. Phys. B, 2023, 32(8): 087505.
[3] Enhancement of spin-orbit torque efficiency by tailoring interfacial spin-orbit coupling in Pt-based magnetic multilayers
Wenqiang Wang(王文强), Gengkuan Zhu(朱耿宽), Kaiyuan Zhou(周恺元), Xiang Zhan(战翔), Zui Tao(陶醉), Qingwei Fu(付清为), Like Liang(梁力克), Zishuang Li(李子爽), Lina Chen(陈丽娜), Chunjie Yan(晏春杰), Haotian Li(李浩天), Tiejun Zhou(周铁军), and Ronghua Liu(刘荣华). Chin. Phys. B, 2022, 31(9): 097504.
[4] Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain
Jun Ren(任军), Junming Li(李军明), Sheng Zhang(张胜), Jun Li(李骏), Wenxia Su(苏文霞), Dunhui Wang(王敦辉), Qingqi Cao(曹庆琪), and Youwei Du(都有为). Chin. Phys. B, 2022, 31(7): 077502.
[5] Enhancement of magnetic and dielectric properties of low temperature sintered NiCuZn ferrite by Bi2O3-CuO additives
Jie Li(李颉), Bing Lu(卢冰), Ying Zhang(张颖), Jian Wu(武剑), Yan Yang(杨燕), Xue-Ning Han(韩雪宁), Dan-Dan Wen(文丹丹), Zheng Liang(梁峥), and Huai-Wu Zhang(张怀武). Chin. Phys. B, 2022, 31(4): 047502.
[6] Gilbert damping in the layered antiferromagnet CrCl3
Xinlin Mi(米锌林), Ledong Wang(王乐栋), Qi Zhang(张琪), Yitong Sun(孙艺彤), Yufeng Tian(田玉峰), Shishen Yan(颜世申), and Lihui Bai(柏利慧). Chin. Phys. B, 2022, 31(2): 027505.
[7] Terahertz magnetic resonance in MnCr2O4 under high magnetic field
Peng Zhang(张朋), Kaibo He(贺凯博), Zheng Wang(王铮), Shile Zhang(张仕乐), Jianming Dai(戴建明), and Fuhai Su(苏付海). Chin. Phys. B, 2022, 31(10): 107502.
[8] Theoretical investigation of ferromagnetic resonance in a ferromagnetic thin film with external stress anisotropy
Jieyu Zhou(周婕妤), Jianhong Rong(荣建红), Huan Wang(王焕), Guohong Yun(云国宏), Yanan Wang(王娅男), and Shufei Zhang(张舒飞). Chin. Phys. B, 2022, 31(1): 017601.
[9] Magnetic dynamics of two-dimensional itinerant ferromagnet Fe3GeTe2
Lijun Ni(倪丽君), Zhendong Chen(陈振东), Wei Li(李威), Xianyang Lu(陆显扬), Yu Yan(严羽), Longlong Zhang(张龙龙), Chunjie Yan(晏春杰), Yang Chen(陈阳), Yaoyu Gu(顾耀玉), Yao Li(黎遥), Rong Zhang(张荣), Ya Zhai(翟亚), Ronghua Liu(刘荣华), Yi Yang(杨燚), and Yongbing Xu(徐永兵). Chin. Phys. B, 2021, 30(9): 097501.
[10] Enhanced spin-orbit torque efficiency in Pt100-xNix alloy based magnetic bilayer
Congli He(何聪丽), Qingqiang Chen(陈庆强), Shipeng Shen(申世鹏), Jinwu Wei(魏晋武), Hongjun Xu(许洪军), Yunchi Zhao(赵云驰), Guoqiang Yu(于国强), and Shouguo Wang(王守国). Chin. Phys. B, 2021, 30(3): 037503.
[11] Effect of interface magnetization depinning on the frequency shift of ferromagnetic and spin wave resonance in YIG/GGG films
Fanqing Lin(林凡庆), Shouheng Zhang(张守珩), Guoxia Zhao(赵国霞), Hongfei Li(李洪飞), Weihua Zong(宗卫华), Shandong Li(李山东). Chin. Phys. B, 2020, 29(6): 067601.
[12] Improvement of high-frequency properties of Co2FeSi Heusler films by ultrathin Ru underlayer
Cuiling Wang(王翠玲), Shouheng Zhang(张守珩), Shandong Li(李山东), Honglei Du(杜洪磊), Guoxia Zhao(赵国霞), Derang Cao(曹德让). Chin. Phys. B, 2020, 29(4): 046202.
[13] Giant anisotropy of magnetic damping and significant in-plane uniaxial magnetic anisotropy in amorphous Co40Fe40B20 films on GaAs(001)
Ji Wang(王佶), Hong-Qing Tu(涂宏庆), Jian Liang(梁健), Ya Zhai(翟亚), Ruo-Bai Liu(刘若柏), Yuan Yuan(袁源), Lin-Ao Huang(黄林傲), Tian-Yu Liu(刘天宇), Bo Liu(刘波)†, Hao Meng(孟皓), Biao You(游彪), Wei Zhang(张维), Yong-Bing Xu(徐永兵), and Jun Du(杜军)‡. Chin. Phys. B, 2020, 29(10): 107503.
[14] Thickness-dependent magnetic anisotropy in obliquely deposited Fe(001)/Pd thin film bilayers probed by VNA-FMR
Qeemat Gul, Wei He(何为), Yan Li(李岩), Rui Sun(孙瑞), Na Li(李娜), Xu Yang(杨旭), Yang Li(李阳), Zi-Zhao Gong(弓子召), Zong-Kai Xie(谢宗凯), Xiang-Qun Zhang(张向群), Zhao-Hua Cheng(成昭华). Chin. Phys. B, 2019, 28(7): 077502.
[15] Voltage control of ferromagnetic resonance and spin waves
Xinger Zhao(赵星儿), Zhongqiang Hu(胡忠强), Qu Yang(杨曲), Bin Peng(彭斌), Ziyao Zhou(周子尧), Ming Liu(刘明). Chin. Phys. B, 2018, 27(9): 097505.
No Suggested Reading articles found!