Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(1): 017601    DOI: 10.1088/1674-1056/ac1b86
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Theoretical investigation of ferromagnetic resonance in a ferromagnetic thin film with external stress anisotropy

Jieyu Zhou(周婕妤)1, Jianhong Rong(荣建红)1,†, Huan Wang(王焕)2, Guohong Yun(云国宏)1,3, Yanan Wang(王娅男)1, and Shufei Zhang(张舒飞)1
1 Inner Mongolia Key Laboratory of Nanoscience and Nanotechnology and School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China;
2 College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China;
3 College of Physics and Electronic Information, Inner Mongolia Normal University, Hohhot 010022, Chin
Abstract  We use the ferromagnetic resonance (FMR) method to study the properties of ferromagnetic thin film, in which external stress anisotropy, fourfold anisotropy and uniaxial anisotropy are considered. The analytical expressions of FMR frequency, linewidth and the imaginary part of magnetic susceptibility are obtained. Our results reveal that the FMR frequency and the imaginary part of magnetic susceptibility are distinctly enhanced, and the frequency linewidth or field linewidth are broadened due to a strong external stress anisotropy field. The hard-axis and easy-axis components of magnetization can be tuned significantly by controlling the intensity and direction of stress and the in-plane uniaxial anisotropy field.
Keywords:  ferromagnetic resonance      external stress anisotropy      fourfold anisotropy      uniaxial anisotropy  
Received:  11 May 2021      Revised:  22 July 2021      Accepted manuscript online:  07 August 2021
PACS:  76.50.+g (Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance)  
  75.70.Ak (Magnetic properties of monolayers and thin films)  
  75.30.Gw (Magnetic anisotropy)  
Fund: Project supported by the Natural Science Foundation of Inner Mongolia of China (Grant No. 2019MS01021), the Research Program of Science and Technology at Universities of Inner Mongolia Autonomous Region, China (Grant No. NJZY21454), and the National Natural Science Foundation of China (Theoretical Physics) (Grant No. 11947414).
Corresponding Authors:  Jianhong Rong     E-mail:  jhrong502@163.com

Cite this article: 

Jieyu Zhou(周婕妤), Jianhong Rong(荣建红), Huan Wang(王焕), Guohong Yun(云国宏), Yanan Wang(王娅男), and Shufei Zhang(张舒飞) Theoretical investigation of ferromagnetic resonance in a ferromagnetic thin film with external stress anisotropy 2022 Chin. Phys. B 31 017601

[1] Meckenstock R, Spoddig D, Himmelbauer K, Krenn H, Doi M, Keune W, Frait Z and Pelzl J 2002 J. Magn. Magn. Mater. 240 410
[2] Hamida B A, Sievers S, Pierz K and Schumacher H W 2013 J. Appl. Phys. 114 123704
[3] Kumar R, Samantaray B and Hossain Z 2019 J. Phys.: Condens. Matter. 31 435802
[4] Wu S, Abe K, Nakano T, Mewes T, Mewes C, Mankey G J and Suzuki T 2019 Phys. Rev. B 99 144416
[5] Seemann K 2021 J. Magn. Magn. Mater. 529 167850
[6] Rodríguez-Suárez R L, Oliveira A B, Estrada F, Maior D S, Arana M, Santos O A, Azevedo A and Rezende S M 2018 J. Appl. Phys. 123 043901
[7] Rezende S M, Azevedo A, Lucena M A and de Aguiar F M 2001 Phys. Rev. B 63 214418
[8] Rezende S M, Lucena M A, Azevedo A, de Aguiar F M, Fermin J R and Parkin S S P 2003 J. Appl. Phys. 93 7717
[9] Lee H, Wang Y H A, Mewes C K A, Butler W H, Mewes T, Maat S, York B, Carey M J and Childress J R 2009 Appl. Phys. Lett. 95 082502
[10] Mohammadi J B, Jones J M, Paul S, Khodadadi B, Mewes C K A, Mewes T and Kaiser C 2017 Phys. Rev. B 95 064414
[11] Wei Y J, Akansel S, Thersleff T, Harward I, Brucas R, Ranjbar M, Jana S, Lansaker P, Pogoryelov Y, Dumas R K, Leifer K, Karis O, Åkerman J, Celinski Z and Svedlindh P 2015 Appl. Phys. Lett. 106 042405
[12] Chen H, Chen Y P, Wang T, Xie Y S, Franco A F and Xiao J Q 2020 IEEE Trans. Magn. 56 2800506
[13] Mizukami S, Ando Y and Miyazaki T 2001 J. Magn. Magn. Mater. 226-230 1640
[14] Sossmeier K D, Beck F, Gomes R C, Schelp L F and Cararaetc M 2010 J. Phys. D: Appl. Phys. 43 055003
[15] Wang J, Tu H Q, Liang J, Zhai Y, Liu R B, Yuan Y, Huang L A, Liu T Y, Liu B, Meng H, You B, Zhang W, Xu Y B and Du J 2020 Chin. Phys. B 29 107503
[16] Wang C L, Zhang S H, Li S D, Du H L, Zhao G X and Cao D R 2020 Chin. Phys. B 29 046202
[17] Layadi A 2012 J. Appl. Phys. 112 073901
[18] Zhang L, Rong J H, Yun G H, Wang D and Bao L B 2016 Mater. Res. Express 3 076101
[19] Gandhi A C and Lin J G 2017 J. Phys.: Condens. Matter. 29 215802
[20] Rong J H, Zhang L, Yun G H and Bao L B 2019 Indian J. Phys. 93 207
[21] Choi S, Bac S K, Liu X Y, Lee S, Dong S, Dobrowolska M and Furdyna J K 2019 Sci. Rep. 9 13061
[22] Huang Y, Wang X Q, Wu H L, Li X L, Feng H M, Liu Y Y, Liu W S, Ma Y X, Liu Q F and Wang J B 2020 J. Magn. Magn. Mater. 494 165756
[23] Wang C M, Zhang S H, Huang Y C, Sang T, Cao D R, Wang X, Xu J, Zhao G X, Wang C L and Li S D 2021 J. Magn. Magn. Mater. 527 167801
[24] Sipeky A and Ivanyi A 2006 Phys. B 372 177
[25] Gueye M, Zighem F, Belmeguenai M, Gabor M, Tiusan C and Faurie D 2016 J. Phys. D: Appl. Phys. 49 265001
[26] Li S D, Miao G X, Cao D R, Li Q, Xu J, Wen Z, Dai Y Y, Yan S S and Lu Y G 2018 ACS Appl. Mater. Interfaces 10 8853
[27] Wang H, Rong J H, Yun G H and Bao L B 2019 Acta. Phys. Pol. A 136 405
[28] Wang H, Zhou J Y, Wang Y N and Ma R J 2020 Indian J. Phys. 95 2359
[29] Layadi A 2020 J. Appl. Phys. 127 223907
[30] Smit J and Beljers H G 1955 Philips Res. Rep. 10 113
[31] Suhl H 1955 Phys. Rev. 97 555
[32] Celinski Z, Urquhart K B and Heinrich B 1997 J. Magn. Magn. Mater. 166 6
[33] Toliński T, Lenz K, Lindner J, Kosubek E, Baberschke K, Spoddig D and Meckenstock R 2003 Solid State Commun. 128 385
[1] Enhancement of spin-orbit torque efficiency by tailoring interfacial spin-orbit coupling in Pt-based magnetic multilayers
Wenqiang Wang(王文强), Gengkuan Zhu(朱耿宽), Kaiyuan Zhou(周恺元), Xiang Zhan(战翔), Zui Tao(陶醉), Qingwei Fu(付清为), Like Liang(梁力克), Zishuang Li(李子爽), Lina Chen(陈丽娜), Chunjie Yan(晏春杰), Haotian Li(李浩天), Tiejun Zhou(周铁军), and Ronghua Liu(刘荣华). Chin. Phys. B, 2022, 31(9): 097504.
[2] Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain
Jun Ren(任军), Junming Li(李军明), Sheng Zhang(张胜), Jun Li(李骏), Wenxia Su(苏文霞), Dunhui Wang(王敦辉), Qingqi Cao(曹庆琪), and Youwei Du(都有为). Chin. Phys. B, 2022, 31(7): 077502.
[3] Enhancement of magnetic and dielectric properties of low temperature sintered NiCuZn ferrite by Bi2O3-CuO additives
Jie Li(李颉), Bing Lu(卢冰), Ying Zhang(张颖), Jian Wu(武剑), Yan Yang(杨燕), Xue-Ning Han(韩雪宁), Dan-Dan Wen(文丹丹), Zheng Liang(梁峥), and Huai-Wu Zhang(张怀武). Chin. Phys. B, 2022, 31(4): 047502.
[4] Gilbert damping in the layered antiferromagnet CrCl3
Xinlin Mi(米锌林), Ledong Wang(王乐栋), Qi Zhang(张琪), Yitong Sun(孙艺彤), Yufeng Tian(田玉峰), Shishen Yan(颜世申), and Lihui Bai(柏利慧). Chin. Phys. B, 2022, 31(2): 027505.
[5] Terahertz magnetic resonance in MnCr2O4 under high magnetic field
Peng Zhang(张朋), Kaibo He(贺凯博), Zheng Wang(王铮), Shile Zhang(张仕乐), Jianming Dai(戴建明), and Fuhai Su(苏付海). Chin. Phys. B, 2022, 31(10): 107502.
[6] Magnetic dynamics of two-dimensional itinerant ferromagnet Fe3GeTe2
Lijun Ni(倪丽君), Zhendong Chen(陈振东), Wei Li(李威), Xianyang Lu(陆显扬), Yu Yan(严羽), Longlong Zhang(张龙龙), Chunjie Yan(晏春杰), Yang Chen(陈阳), Yaoyu Gu(顾耀玉), Yao Li(黎遥), Rong Zhang(张荣), Ya Zhai(翟亚), Ronghua Liu(刘荣华), Yi Yang(杨燚), and Yongbing Xu(徐永兵). Chin. Phys. B, 2021, 30(9): 097501.
[7] Enhanced spin-orbit torque efficiency in Pt100-xNix alloy based magnetic bilayer
Congli He(何聪丽), Qingqiang Chen(陈庆强), Shipeng Shen(申世鹏), Jinwu Wei(魏晋武), Hongjun Xu(许洪军), Yunchi Zhao(赵云驰), Guoqiang Yu(于国强), and Shouguo Wang(王守国). Chin. Phys. B, 2021, 30(3): 037503.
[8] Effect of interface magnetization depinning on the frequency shift of ferromagnetic and spin wave resonance in YIG/GGG films
Fanqing Lin(林凡庆), Shouheng Zhang(张守珩), Guoxia Zhao(赵国霞), Hongfei Li(李洪飞), Weihua Zong(宗卫华), Shandong Li(李山东). Chin. Phys. B, 2020, 29(6): 067601.
[9] Improvement of high-frequency properties of Co2FeSi Heusler films by ultrathin Ru underlayer
Cuiling Wang(王翠玲), Shouheng Zhang(张守珩), Shandong Li(李山东), Honglei Du(杜洪磊), Guoxia Zhao(赵国霞), Derang Cao(曹德让). Chin. Phys. B, 2020, 29(4): 046202.
[10] Giant anisotropy of magnetic damping and significant in-plane uniaxial magnetic anisotropy in amorphous Co40Fe40B20 films on GaAs(001)
Ji Wang(王佶), Hong-Qing Tu(涂宏庆), Jian Liang(梁健), Ya Zhai(翟亚), Ruo-Bai Liu(刘若柏), Yuan Yuan(袁源), Lin-Ao Huang(黄林傲), Tian-Yu Liu(刘天宇), Bo Liu(刘波)†, Hao Meng(孟皓), Biao You(游彪), Wei Zhang(张维), Yong-Bing Xu(徐永兵), and Jun Du(杜军)‡. Chin. Phys. B, 2020, 29(10): 107503.
[11] Thickness-dependent magnetic anisotropy in obliquely deposited Fe(001)/Pd thin film bilayers probed by VNA-FMR
Qeemat Gul, Wei He(何为), Yan Li(李岩), Rui Sun(孙瑞), Na Li(李娜), Xu Yang(杨旭), Yang Li(李阳), Zi-Zhao Gong(弓子召), Zong-Kai Xie(谢宗凯), Xiang-Qun Zhang(张向群), Zhao-Hua Cheng(成昭华). Chin. Phys. B, 2019, 28(7): 077502.
[12] Voltage control of ferromagnetic resonance and spin waves
Xinger Zhao(赵星儿), Zhongqiang Hu(胡忠强), Qu Yang(杨曲), Bin Peng(彭斌), Ziyao Zhou(周子尧), Ming Liu(刘明). Chin. Phys. B, 2018, 27(9): 097505.
[13] Large tunable FMR frequency shift by magnetoelectric coupling in oblique-sputtered Fe52.5Co22.5B25.0/PZN-PT multiferroic heterostructure
Zhi-Peng Shi(时志鹏), Xiao-Min Liu(刘晓敏), Shan-Dong Li(李山东). Chin. Phys. B, 2017, 26(9): 097601.
[14] Shape-manipulated spin-wave eigenmodes of magnetic nanoelements
Zhang Guang-Fu (张光富), Li Zhi-Xiong (李志雄), Wang Xi-Guang (王希光), Nie Yao-Zhuang (聂耀庄), Guo Guang-Hua (郭光华). Chin. Phys. B, 2015, 24(9): 097503.
[15] Microwave ferromagnetic properties of as-deposited Co2FeSi Heusler alloy films prepared by oblique sputtering
Cao Xiao-Qin (曹晓琴), Li Shan-Dong (李山东), Cai Zhi-Yi (蔡志义), Du Hong-Lei (杜洪磊), Xue Qian (薛倩), Gao Xiao-Yang (高小洋), Xie Shi-Ming (谢施名). Chin. Phys. B, 2014, 23(8): 086201.
No Suggested Reading articles found!