Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(2): 027505    DOI: 10.1088/1674-1056/ac11cc
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Gilbert damping in the layered antiferromagnet CrCl3

Xinlin Mi(米锌林), Ledong Wang(王乐栋), Qi Zhang(张琪), Yitong Sun(孙艺彤), Yufeng Tian(田玉峰), Shishen Yan(颜世申), and Lihui Bai(柏利慧)
School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
Abstract  We theoretically and experimentally studied the Gilbert damping evolution of both acoustic and optical magnetic resonance modes in the layered flake CrCl3 with an external magnetic field H applied in plane. Based on a Lagrangian equation and a Rayleigh dissipation function, we predicted that the resonance linewidth ΔH as a function of microwave frequency ω is nonlinear for both acoustic and optical modes in the CrCl3 flake, which is significantly different from the linear relationship of ΔHω in ferromagnets. Measuring the microwave transmission through the CrCl3 flake, we obtained the ω-H dispersion and damping evolution ΔH-ω for both acoustic and optical modes. Combining both our theoretical prediction and experimental observations, we concluded that the nonlinear damping evolution ΔH-ω is a consequence of the interlayer interaction during the antiferromagnetic resonance, and the interlayer Gilbert dissipation plays an important role in the nonlinear damping evolution because of the asymmetry of the non-collinear magnetizaiton between layers.
Keywords:  Gilbert damping      antiferromagnetic resonance (AFMR)      CrCl3  
Received:  14 May 2021      Revised:  24 June 2021      Accepted manuscript online:  07 July 2021
PACS:  75.78.-n (Magnetization dynamics)  
  76.50.+g (Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance)  
  75.50.Ee (Antiferromagnetics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11774200), the Shandong Provincial Natural Science Foundation, China (Grant No. ZR2019JQ02), and the Youth Interdisciplinary Science and Innovative Research Groups of Shandong University.
Corresponding Authors:  Lihui Bai     E-mail:  lhbai@sdu.edu.cn

Cite this article: 

Xinlin Mi(米锌林), Ledong Wang(王乐栋), Qi Zhang(张琪), Yitong Sun(孙艺彤), Yufeng Tian(田玉峰), Shishen Yan(颜世申), and Lihui Bai(柏利慧) Gilbert damping in the layered antiferromagnet CrCl3 2022 Chin. Phys. B 31 027505

[1] Bhattacharjee N, Sapozhnik A A, Bodnar S Y, Grigorev V Y, Agustsson S Y, Cao J, Dominko D, Obergfell M, Gomonay O, Sinova J, Kläui M, Elmers H J, Jourdan M and Demsar J 2018 Phys. Rev. Lett. 120 237201
[2] Baltz V, Manchon A, Tsoi M, Moriyama T, Ono T and Tserkovnyak Y 2018 Rev. Mod. Phys. 90 15005
[3] Duine R A, Lee K J, Parkin S S and Stiles M D 2018 Nat. Phys. 14 217
[4] Olejník K, Seifert T, Kašpar Z, Novák V, Wadley P, Campion R P, Baumgartner M, Gambardella P, Němec P, Wunderlich J, Sinova J, Kuzžl P, Müller M, Kampfrath T and Jungwirth T 2018 Sci. Adv. 4 eaar3566
[5] Jungwirth T, Marti X, Wadley P and Wunderlich J 2016 Nat. Nanotechnol. 11 231
[6] Wadley P, Howells B, Elezny J, Andrews C, Hills V, Campion R P, Novak V, Olejnik K, Maccherozzi F, Dhesi S S, Martin S Y, Wagner T, Wunderlich J, Freimuth F, Mokrousov Y, Kune J, Chauhan J S, Grzybowski M J, Rushforth A W, Edmonds K W, Gallagher B L and Jungwirth T 2016 Science 351 587
[7] Wei Z, Sharma A, Nunez A S, Haney P M, Duine R A, Bass J, MacDonald A H and Tsoi M 2007 Phys. Rev. Lett. 98 116603
[8] Haney P M and MacDonald A H 2008 Phys. Rev. Lett. 100 196801
[9] Duine R A, Haney P M, Núñez A S and MacDonald A H 2007 Phys. Rev. B 75 014433
[10] Xu Y, Wang S and Xia K 2008 Phys. Rev. Lett. 100 226602
[11] Guo Y, Liu N, Zhao Y, Jiang X, Zhou S and Zhao J 2020 Chin. Phys. Lett. 37 107506
[12] Park B G, Wunderlich J, Martí X, Holý V, Kurosaki Y, Yamada M, Yamamoto H, Nishide A, Hayakawa J, Takahashi H, Shick A B and Jungwirth T 2011 Nat. Mater. 10 347
[13] Wadley P, Howells B, Elezny J, Andrews C, Hills V, Campion R P, Novak V, Olejnik K, Maccherozzi F, Dhesi S S, Martin S Y, Wagner T, Wunderlich J, Freimuth F, Mokrousov Y, Kune J, Chauhan J S, Grzybowski M J, Rushforth A W, Edmonds K W, Gallagher B L and Jungwirth T 2016 Science 351 587
[14] Cheng R, Xiao D and Brataas A 2016 Phys. Rev. Lett. 116 207603
[15] Kamra A and Belzig W 2017 Phys. Rev. Lett. 119 197201
[16] Cheng R, Xiao J, Niu Q and Brataas A 2014 Phys. Rev. Lett. 113 057601
[17] Kampfrath T, Sell A, Klatt G, Pashkin A, Mährlein S, Dekorsy T, Wolf M, Fiebig M, Leitenstorfer A and Huber R 2011 Nat. Photon. 5 31
[18] Baierl S, Mentink J H, Hohenleutner M, Braun L, Do T M, Lange C, Sell A, Fiebig M, Woltersdorf G, Kampfrath T and Huber R 2016 Phys. Rev. Lett. 117 197201
[19] Ma X P, Piao H G, Yang L, Kim D H, You C Y and Pan L 2020 Chin. Phys. B 29 097502
[20] Zhao Z X, He P B, Cai M Q and Li Z D 2020 Chin. Phys. B 29 077502
[21] Sparks M, Loudon R and Kittel C 1961 Phys. Rev. 122 791
[22] Gilbert T L 2004 IEEE Transactions on Magnetics 40 3443
[23] Tserkovnyak Y, Brataas A, Bauer G E and Halperin B I 2005 Rev. Mod. Phys. 77 1375
[24] Tserkovnyak Y, Brataas A and Bauer G E W 2002 Phys. Rev. Lett. 88 4
[25] Landau L and Lifshitz E 1992 Perspectives in Theoretical Physics (Elsevier) Vol. 169 pp. 51-65
[26] Wang J, Tu H Q, Liang J, Zhai Y, Liu R B, Yuan Y, Huang L A, Liu T Y, Liu B, Meng H, You B, Zhang W, Xu Y B and Du J 2020 Chin. Phys. B 29 107503
[27] Yang X K, Zhang B, Cui H Q, Li W W and Wang S 2016 Acta Phys. Sin. 65 (in Chinese)
[28] Zhao Z X, He P B, Cai M Q and Li Z D 2020 Chin. Phys. B 29 077502
[29] Li J, Zhu S Y and Agarwal G S 2018 Phys. Rev. Lett. 121 203601
[30] Heinrich B, Cochran J F and Hasegawa R 1985 J. Appl. Phys. 57 3690
[31] Spano M L and Bhagat S M 1981 J. Magn. Magn. Mater. 24 143
[32] Heinrich B, Rudd J M, Urquhart K, Myrtle K, Cochran J F and Hasegawa R 1984 J. Appl. Phys. 55 1814
[33] Schoen M A, Thonig D, Schneider M L, Silva T J, Nembach H T, Eriksson O, Karis O and Shaw J M 2016 Nat. Phys. 12 839
[34] Keffer F and Kittel C 1952 Phys. Rev. 85 329
[35] Kittel C 1951 Phys. Rev. 82 565
[36] Kamra A, Troncoso R E, Belzig W and Brataas A 2018 Phys. Rev. B 98 184402
[37] Rodrigue G P, Meyer H and Jones R V 1960 J. Appl. Phys. 31 S376
[38] Yuan H Y, Liu Q, Xia K, Yuan Z and Wang X R 2019 Europhys. Lett. 126 67006
[39] Macneill D, Hou J T, Klein D R, Zhang P, Jarillo-Herrero P and Liu L 2019 Phys. Rev. Lett. 123 47204
[40] Liu Q, Yuan H Y, Xia K and Yuan Z 2017 Phys. Rev. Mater. 1 061401(R)
[41] Tatara G, Kohno H and Shibata J 2008 Physics Reports 468 213
[1] Temperature-dependent Gilbert damping in Co2 FeAl thin films with different B2 ordering degrees
Gesang Dunzhu(格桑顿珠), Yi-Bing Zhao(赵逸冰), Ying Jin(金莹), Cai Zhou(周偲), and Chang-Jun Jiang(蒋长军). Chin. Phys. B, 2020, 29(12): 126701.
[2] Spin pumping at the Co2FeAl0.5Si0.5/Pt interface
Wu Yong (吴勇), Zhao Yue-Lei (赵月雷), Xiong Qiang (熊强), Xu Xiao-Guang (徐晓光), Sun Young (孙阳), Zhang Shi-Qing (张十庆), Jiang Yong (姜勇). Chin. Phys. B, 2014, 23(1): 018503.
No Suggested Reading articles found!