|
Special Issue:
SPECIAL TOPIC — Advanced magnonics
|
| SPECIAL TOPIC — Advanced magnonics |
Prev
Next
|
|
|
Ballistic magnon circulators with magnetic skyrmions |
| Haichuan Zhang(张海川)1,2, Hongbin Wu(武宏斌)1,2, and Jin Lan(兰金)1,2,† |
1 Center for Joint Quantum Studies and Department of Physics, School of Science, Tianjin University, Tianjin 300072, China; 2 Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Tianjin University, Tianjin 300354, China |
|
|
|
|
Abstract Spin waves, quantized as magnons, constitute a fundamental class of excitations and serve as one of the primary angular momentum carriers in magnetic systems. Devoid of Joule heating, a magnonic device that routes spin waves between different ports holds promise for an energy-efficient information infrastructure. Here, we systematically investigate the transport behavior of a magnetic skyrmion-based magnon circulator, a representative device that directs spin wave flow in a non-reciprocal manner. Particularly, a ballistic transport model is established, where the scattering of spin waves by magnetic skyrmions is simplified as magnon deflection by fictitious electromagnetic fields within the skyrmions. Through the combination of ballistic analyses and micromagnetic simulations, the circulation performance is rigorously evaluated for multiple magnon circulators.
|
Received: 16 April 2025
Revised: 14 May 2025
Accepted manuscript online: 20 May 2025
|
|
|
| Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 12374117 and 11904260) and the Natural Science Foundation of Tianjin (Grant No. 20JCQNJC02020). |
Corresponding Authors:
Jin Lan
E-mail: lanjin@tju.edu.cn
|
Cite this article:
Haichuan Zhang(张海川), Hongbin Wu(武宏斌), and Jin Lan(兰金) Ballistic magnon circulators with magnetic skyrmions 2025 Chin. Phys. B 34 107503
|
[1] Cornelissen L J, Liu J, Duine R A, Youssef J B and van Wees B J 2015 Nat. Phys. 11 1022 [2] Lebrun R, Ross A, Bender S A, Qaiumzadeh A, Baldrati L, Cramer J, Brataas A, Duine R A and Kläui M 2018 Nature 561 222 [3] Lan J, Yu W, Wu R and Xiao J 2015 Phys. Rev. X 5 041049 [4] Han J, Zhang P, Hou J T, Siddiqui S A and Liu L 2019 Science 366 1121 [5] Yu W, Lan J and Xiao J 2020 Phys. Rev. Appl. 13 024055 [6] Parkin S S P, Hayashi M and Thomas L 2008 Science 320 190 [7] Fert A, Cros V and Sampaio J 2013 Nat. Nanotechnol. 8 152 [8] Chumak A V, Vasyuchka V I, Serga A A and Hillebrands B 2015 Nat. Phys. 11 453 [9] Yu H, Xiao J and Schultheiss H 2021 Phys. Rep. 905 1 [10] Flebus B, Grundler D, Rana B, et al. 2024 J. Phys.: Condens. Matter 36 363501 [11] Wang Q, Verba R, Heinz B, Schneider M, Wojewoda O, Davídková K, Levchenko K, Dubs C, Mauser N J, Urbánek M, Pirro P and Chumak A V 2023 Sci. Adv. 9 eadg4609 [12] Girardi D, Finizio S, Donnelly C, Rubini G, Mayr S, Levati V, Cuccurullo S, Maspero F, Raabe J, Petti D and Albisetti E 2024 Nat. Commun. 15 3057 [13] Zhang Y, Qiu L, Chen J, Wu S, Wang H, Malik IA, Cai M, Wu M, Gao P, Hua C, Yu W, Xiao J, Jiang Y, Yu H, Shen K and Zhang J 2025 Nat. Mater. 24 69 [14] Liu C, Ai F, Reisbick S, Zong A, Pofelski A, Han MG, Camino F, Jing C, Lomakin V and Zhu Y 2025 Nat. Mater. 24 406 [15] Lan G, Liu K Y, Wang Z, Xia F, Xu H, Guo T, Zhang Y, He B, Li J, Wan C, Bauer G E W, Yan P, Liu G Q, Pan X Y, Han X and Yu G 2025 Nat. Commun. 16 1178 [16] Schneider T, Serga A A, Leven B, Hillebrands B, Stamps R L and Kostylev M P 2008 Appl. Phys. Lett. 92 022505 [17] Rousseau O, Rana B, Anami R, Yamada M, Miura K, Ogawa S and Otani Y 2015 Sci. Rep. 5 09873 [18] Liu T and Vignale G 2011 Phys. Rev. Lett. 106 247203 [19] Dobrovolskiy O V, Sachser R, Bunyaev S A, Navas D, Bevz V M, Zelent M, Smigaj W, Rychły J, Krawczyk M, Vovk R V, Huth M and Kakazei G N 2019 ACS Appl. Mater. Interfaces 11 17654 [20] Hertel R, Wulfhekel W and Kirschner J 2004 Phys. Rev. Lett. 93 257202 [21] Lan J, Yu W and Xiao J 2017 Nat. Commun. 8 178 [22] Faridi E, Kim S K and Vignale G 2022 Phys. Rev. B 106 094411 [23] Ye F and Lan J 2021 Phys. Rev. B 104 L180401 [24] Wu H and Lan J 2022 Phys. Rev. B 105 174427 [25] Liu Y and Lan J 2023 Phys. Rev. B 108 L180407 [26] Yu W, Lan J, Wu R and Xiao J 2016 Phys. Rev. B 94 140410 [27] Xing X and Zhou Y 2016 NPG Asia Mater. 8 e246 [28] Wang X S, Zhang H W and Wang X R 2018 Phys. Rev. Appl. 9 024029 [29] Chumak A V, Serga A A and Hillebrands B 2014 Nat. Commun. 5 4700 [30] Wang Q, Verba R, Davídková K, Heinz B, Tian S, Rao Y, Guo M, Guo X, Dubs C, Pirro P and Chumak A V 2024 Nat. Commun. 15 7577 [31] Wang Z, Yuan H Y, Cao Y, Li Z X, Duine R A and Yan P 2021 Phys. Rev. Lett. 127 037202 [32] Koerner C, Dreyer R, Wagener M, Liebing N, Bauer H G and Woltersdorf G 2022 Science 375 1165 [33] Leenders R A, Afanasiev D, Kimel A V and Mikhaylovskiy R V 2024 Nature 630 335 [34] Datta S 1995 Electronic Transport in Mesoscopic Systems (Cambridge: Cambridge University Press) [35] Ferry D K, Goodnick SMand Bird J 2009 Transport in Nanostructures (Cambridge: Cambridge University Press) [36] Daniels M W, Yu W, Cheng R, Xiao J and Xiao D 2019 Phys. Rev. B 99 224433 [37] Szulc K 2020 Phys. Rev. Appl. 14 034063 [38] Wang Q, Chumak A V and Pirro P 2021 Nat. Commun. 12 2636 [39] Zhao J, Feng L, Ma M and Ma F 2023 J. Magn. Magn. Mater. 586 171161 [40] Lan J and Xiao J 2021 Phys. Rev. B 103 054428 [41] Lan J, Yu W and Xiao J 2021 Phys. Rev. B 103 214407 [42] Jin Z, Yao X, Wang Z, Yuan HY, Zeng Z, Wang W, Cao Y and Yan P 2023 Phys. Rev. Lett. 131 166704 [43] Zhang X, Ezawa M, Xiao D, Zhao GP, Liu Y and Zhou Y 2015 Nanotechnology 26 225701 [44] Zhang X, Müller J, Xia J, Garst M, Liu X and Zhou Y 2017 New J. Phys. 19 065001 [45] Liang X, Lan J, Zhao G, Zelent M, Krawczyk M and Zhou Y 2023 Phys. Rev. B 108 184407 [46] Zhang Z, Lin K, Zhang Y, Bournel A, Xia K, Kläui M and Zhao W 2023 Sci. Adv. 9 eade7439 [47] van Hoogdalem KA, Tserkovnyak Y and Loss D 2013 Phys. Rev. B 87 024402 [48] Landau L and Lifshitz E 1990 The Classical Theory of Fields No. 2 in Course of Theoretical Physics (Beijing: World Publishing Corporation) [49] Kim S K, Nakata K, Loss D and Tserkovnyak Y 2019 Phys. Rev. Lett. 122 057204 [50] Fleury R, Sounas DL, Sieck CF, Haberman MR and Alù A 2014 Science 343 516 [51] Rasmussen C, Quan L and Alù A 2021 J. Appl. Phys. 129 210903 [52] Song C, Zhao L, Liu J and Jiang W 2022 Nano Lett. 22 9638 [53] Vansteenkiste A, Leliaert J, Dvornik M, Helsen M, Garcia-Sanchez F and Van Waeyenberge B 2014 AIP Adv. 4 107133 [54] Ohara K, Zhang X, Chen Y, Wei Z, Ma Y, Xia J, Zhou Y and Liu X 2021 Nano Lett. 21 4320 [55] Duine R A, Lee K J, Parkin S S P and Stiles M D 2018 Nat. Phys. 14 217 [56] Schütte C and Garst M 2014 Phys. Rev. B 90 094423 [57] Iwasaki J, Beekman A J and Nagaosa N 2014 Phys. Rev. B 89 064412 [58] Wu H and Lan J 2025 Phys. Rev. B 112 064410 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|