CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Thickness-dependent magnetic anisotropy in obliquely deposited Fe(001)/Pd thin film bilayers probed by VNA-FMR |
Qeemat Gul1,2, Wei He(何为)1, Yan Li(李岩)1,2, Rui Sun(孙瑞)1,2, Na Li(李娜)1,2, Xu Yang(杨旭)1,2, Yang Li(李阳)1,2, Zi-Zhao Gong(弓子召)1,2, Zong-Kai Xie(谢宗凯)1,2, Xiang-Qun Zhang(张向群)1, Zhao-Hua Cheng(成昭华)1,2,3 |
1 State Key Laboratory of Magnetism and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Songshan Lake Materials Laboratory, Dongguan 523808, China |
|
|
Abstract The thickness-dependent magnetic anisotropy of obliquely deposited Fe(001)/Pd thin films on Mg(001) is investigated by fitting the field-dependent resonant field curve using the Kittel equation. In this study, three Fe film samples with thicknesses of 50 monolayers (ML), 45 ML, and 32 ML deposited at 0°, 45°, and 55°, respectively, are used. The magnetic anisotropy constant obtained from ferromagnetic resonance (FMR) spectra exhibits a dominant fourfold magnetocrystalline anisotropy (MCA) at the normal deposition angle with larger Fe thickness. However, the in-plane uniaxial magnetic anisotropy (UMA) is induced by a higher oblique deposition angle and a smaller thickness. Its hard axis lies between the[100] and[010] directions. The FMR data-fitting analysis yields a precise measurement of smaller contributions to the magnetic anisotropy, such as in-plane UMA. Due to MCA, when the magnetic field is weaker than the saturated field, the magnetization direction does not always align with the external field. The squared frequency-dependent resonant field measurement gives an isotropic Landé g-factor of 2.07. Our results are consistent with previous experiments conducted on the magneto-optical Kerr effect (MOKE) and anisotropic magnetoresistance (AMR) systems. Thus, a vector network analyzer ferromagnetic resonance (VNA-FMR) test-method for finding UMA in obliquely deposited Fe(001)/Pd bilayer ferromagnetic thin films, and determining the magnetic anisotropy constants with respect to the film normal deposition, is proposed.
|
Received: 27 March 2019
Revised: 09 May 2019
Accepted manuscript online:
|
PACS:
|
75.70.Ak
|
(Magnetic properties of monolayers and thin films)
|
|
75.60.Jk
|
(Magnetization reversal mechanisms)
|
|
75.70.Kw
|
(Domain structure (including magnetic bubbles and vortices))
|
|
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2015CB921403 and 2016YFA0300701), the National Natural Science Foundation of China (Grant Nos. 51427801, 11374350, and 51671212), and the Chinese Government Scholarship (Grant No. 2015GXYG37). |
Corresponding Authors:
Zhao-Hua Cheng
E-mail: zhcheng@iphy.ac.cn
|
Cite this article:
Qeemat Gul, Wei He(何为), Yan Li(李岩), Rui Sun(孙瑞), Na Li(李娜), Xu Yang(杨旭), Yang Li(李阳), Zi-Zhao Gong(弓子召), Zong-Kai Xie(谢宗凯), Xiang-Qun Zhang(张向群), Zhao-Hua Cheng(成昭华) Thickness-dependent magnetic anisotropy in obliquely deposited Fe(001)/Pd thin film bilayers probed by VNA-FMR 2019 Chin. Phys. B 28 077502
|
[1] |
Ishida A and Martynov V 2002 MRS Bull. 27 111
|
[2] |
Golub V O, Gontarz R, Kakazei G and Lesnik N 1997 J. Magn. Magn. Mater. 174 95
|
[3] |
Golub V, Reddy K M, Chernenko V, Müllner P, Punnoose A and Ohtsuka M 2009 J. Appl. Phys. 105 07A942
|
[4] |
Kubota T, Tsunegi S, Oogane M, Mizukami S, Miyazaki T, Naganuma H and Ando Y 2009 Appl. Phys. Lett. 94 122504
|
[5] |
Mizukami S, Watanabe D, Oogane M, Ando Y, Miura Y, Shirai M and Miyazaki T 2009 J. Appl. Phys. 105 07D306
|
[6] |
Gau J S and Yetter W E 1987 J. Appl. Phys. 61 3807
|
[7] |
Lisfi A, Lodder J C, Wormeester H and Poelsema B 2002 Phys. Rev. B 66 174420
|
[8] |
Fan X, Xuea D, Lin M, Zhang Z, Guo D, Jiang C and Wei J 2008 Appl. Phys. Lett. 92 222505
|
[9] |
Yoo J H, Restorff J B, Wun-Fogle M and Flatau A B 2008 J. Appl. Phys. 103 07B325
|
[10] |
Viala B, Inturi V R and Barnard J A 1997 J. Appl. Phys. 81 4498
|
[11] |
Shokrollahi H and Janghorban K 2007 J. Magn. Magn. Mater. 317 61
|
[12] |
Yanga Y, Liu B, Tang D, Zhang B, Lu M and Lu H 2010 J. Appl. Phys. 108 073902
|
[13] |
Xi L, Li X Y, Zhou J J, Du J H, Ma J H, Wang Z, Lu J M, Zuo Y L, Xue D S and Li F S 2011 Mater. Sci. Eng. B 176 1317
|
[14] |
Nogués J and Schuller I K 1999 J. Magn. Magn. Mater. 192 203
|
[15] |
Kuanr B K, Camley R E and Celinski Z 2003 J. Appl. Phys. 93 7723
|
[16] |
Queste S, Dubourg S, Achera O, Soret J C, Barholz K U and Mattheis R 2005 J. Magn. Magn. Mater. 288 60
|
[17] |
Lamy Y and Viala B 2006 IEEE Trans. Magn. 42 3332
|
[18] |
Xi L, Zhang Z, Lu J M, Liu J, Sun Q J, Zhou J J, Ge S H and Li F S 2010 Phys. B 405 682
|
[19] |
Li C Y, Chai G Z, Yang C C, Wang W F and Xue D S 2015 Sci. Rep. 5 17023
|
[20] |
Phuoc N N, Chai G Z and Ong C K 2012 J. Appl. Phys. 112 113908
|
[21] |
Zhan Q F, Haesendonck C V, Vandezande S and Temst K 2009 Appl. Phys. Lett. 94 042504
|
[22] |
Prinz G A, Rado G T and Krebs J J 1982 J. Appl. Phys. 53 2087
|
[23] |
Oliver S A, Vittoria C, Schlomann E, Van Hook H J and Tustison R W 1988 J. Appl. Phys. 63 3802
|
[24] |
Heinrich B, Purcell S T, Dutcher J R, Urquhart K B, Cochran J F and Arrott A S 1988 Phys. Rev. B 38 12 879
|
[25] |
Hurdequint H 1991 J. Magn. Magn. Mater. 93 336
|
[26] |
da Silva E C, Meckenstock R, von Geisau O, Kordecki R, Pelzl J, Wolf J A and Griinberg P 1993 J. Magn. Magn. Mater. 121 528
|
[27] |
Naik R, Kota C, Payson J S and Dunifer G L 1993 Phys. Rev. B 48 1008
|
[28] |
Urban R, Woltersdorf G and Heinrich B 2001 Phys. Rev. Lett. 87 217204
|
[29] |
Woltersdorf G and Heinrich B 2004 Phys. Rev. B 69 184417
|
[30] |
Twisselmann D J and McMichael R D 2003 J. Appl. Phys. 93 6903
|
[31] |
Lindner J, Lenz K, Kosubek E, Baberschke K, Spoddig D, Meckenstock R, Pelzl J, Frait Z and Mills D L 2003 Phys. Rev. B 68 060102(R)
|
[32] |
Gerrits T, van den Berg H A M, Hohlfeld J, Bär L and Rasing T 2002 Nature 418 509
|
[33] |
Sun Z Z and Wang X R 2006 Phys. Rev. Lett. 97 077205
|
[34] |
Sun J Z 2006 IBM J. Res. Dev. 50 81
|
[35] |
Calleja J F, Menéndez J L, Cebollada A and Contreras C 2001 Jpn. J. Appl. Phys. 40 6829
|
[36] |
Qeemat G, He W, Li Y, Sun R, Li N, Yang X, Li Y, Gong Z Z, Xie Z K, Zhang X Q and Cheng Z H 2018 Chin. Phys. B 27 097504
|
[37] |
Ding Y, Klemmer T J and Crawford T M 2004 J. Appl. Phys. 96 2969
|
[38] |
Farle M F 1998 Rep. Prog. Phys. 61 755
|
[39] |
Schoen M A W, Thonig D, Schneider M L, Silva T J, Nembach H T, Eriksson O, Karis O and Shaw J M 2016 Nat. Phys. 12 839
|
[40] |
Wolfe J H, Kawakami R K, Ling W L, Qiu Z Q, Arias R and Mills D L 2001 J. Magn. Magn. Mater. 232 36
|
[41] |
Bubendorff J L, Zabrocki S, Garreau G, Hajjar S, Jaafar R, Berling D, Mehdauoui A, Pirri C and Gewinner G 2006 Europhys. Lett. 75 119
|
[42] |
Tang J, He W, Zhang Y S, Zhang W, Li Y, Ahmad S S, Zhang X Q and Cheng Z H 2017 AIP Adv. 7 056311
|
[43] |
Anisimov A N, Farle M, Poulopoulos P, Platow W, Baberschke K, Isberg P, Wäppling R, Niklasson A M N and Eriksson O 1999 Phys. Rev. Lett. 82 2390
|
[44] |
Pelzl J, Meckenstock R, Spoddig D, Schreiber F, Pflaum J and Frait Z 2003 J. Phys.: Condens. Matter 15 S451
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|