Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(7): 077502    DOI: 10.1088/1674-1056/28/7/077502
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Thickness-dependent magnetic anisotropy in obliquely deposited Fe(001)/Pd thin film bilayers probed by VNA-FMR

Qeemat Gul1,2, Wei He(何为)1, Yan Li(李岩)1,2, Rui Sun(孙瑞)1,2, Na Li(李娜)1,2, Xu Yang(杨旭)1,2, Yang Li(李阳)1,2, Zi-Zhao Gong(弓子召)1,2, Zong-Kai Xie(谢宗凯)1,2, Xiang-Qun Zhang(张向群)1, Zhao-Hua Cheng(成昭华)1,2,3
1 State Key Laboratory of Magnetism and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  

The thickness-dependent magnetic anisotropy of obliquely deposited Fe(001)/Pd thin films on Mg(001) is investigated by fitting the field-dependent resonant field curve using the Kittel equation. In this study, three Fe film samples with thicknesses of 50 monolayers (ML), 45 ML, and 32 ML deposited at 0°, 45°, and 55°, respectively, are used. The magnetic anisotropy constant obtained from ferromagnetic resonance (FMR) spectra exhibits a dominant fourfold magnetocrystalline anisotropy (MCA) at the normal deposition angle with larger Fe thickness. However, the in-plane uniaxial magnetic anisotropy (UMA) is induced by a higher oblique deposition angle and a smaller thickness. Its hard axis lies between the[100] and[010] directions. The FMR data-fitting analysis yields a precise measurement of smaller contributions to the magnetic anisotropy, such as in-plane UMA. Due to MCA, when the magnetic field is weaker than the saturated field, the magnetization direction does not always align with the external field. The squared frequency-dependent resonant field measurement gives an isotropic Landé g-factor of 2.07. Our results are consistent with previous experiments conducted on the magneto-optical Kerr effect (MOKE) and anisotropic magnetoresistance (AMR) systems. Thus, a vector network analyzer ferromagnetic resonance (VNA-FMR) test-method for finding UMA in obliquely deposited Fe(001)/Pd bilayer ferromagnetic thin films, and determining the magnetic anisotropy constants with respect to the film normal deposition, is proposed.

Keywords:  oblique angle deposition      iron film thickness      magnetic anisotropy      ferromagnetic resonance  
Received:  27 March 2019      Revised:  09 May 2019      Accepted manuscript online: 
PACS:  75.70.Ak (Magnetic properties of monolayers and thin films)  
  75.60.Jk (Magnetization reversal mechanisms)  
  75.70.Kw (Domain structure (including magnetic bubbles and vortices))  
Fund: 

Project supported by the National Basic Research Program of China (Grant Nos. 2015CB921403 and 2016YFA0300701), the National Natural Science Foundation of China (Grant Nos. 51427801, 11374350, and 51671212), and the Chinese Government Scholarship (Grant No. 2015GXYG37).

Corresponding Authors:  Zhao-Hua Cheng     E-mail:  zhcheng@iphy.ac.cn

Cite this article: 

Qeemat Gul, Wei He(何为), Yan Li(李岩), Rui Sun(孙瑞), Na Li(李娜), Xu Yang(杨旭), Yang Li(李阳), Zi-Zhao Gong(弓子召), Zong-Kai Xie(谢宗凯), Xiang-Qun Zhang(张向群), Zhao-Hua Cheng(成昭华) Thickness-dependent magnetic anisotropy in obliquely deposited Fe(001)/Pd thin film bilayers probed by VNA-FMR 2019 Chin. Phys. B 28 077502

[1] Ishida A and Martynov V 2002 MRS Bull. 27 111
[2] Golub V O, Gontarz R, Kakazei G and Lesnik N 1997 J. Magn. Magn. Mater. 174 95
[3] Golub V, Reddy K M, Chernenko V, Müllner P, Punnoose A and Ohtsuka M 2009 J. Appl. Phys. 105 07A942
[4] Kubota T, Tsunegi S, Oogane M, Mizukami S, Miyazaki T, Naganuma H and Ando Y 2009 Appl. Phys. Lett. 94 122504
[5] Mizukami S, Watanabe D, Oogane M, Ando Y, Miura Y, Shirai M and Miyazaki T 2009 J. Appl. Phys. 105 07D306
[6] Gau J S and Yetter W E 1987 J. Appl. Phys. 61 3807
[7] Lisfi A, Lodder J C, Wormeester H and Poelsema B 2002 Phys. Rev. B 66 174420
[8] Fan X, Xuea D, Lin M, Zhang Z, Guo D, Jiang C and Wei J 2008 Appl. Phys. Lett. 92 222505
[9] Yoo J H, Restorff J B, Wun-Fogle M and Flatau A B 2008 J. Appl. Phys. 103 07B325
[10] Viala B, Inturi V R and Barnard J A 1997 J. Appl. Phys. 81 4498
[11] Shokrollahi H and Janghorban K 2007 J. Magn. Magn. Mater. 317 61
[12] Yanga Y, Liu B, Tang D, Zhang B, Lu M and Lu H 2010 J. Appl. Phys. 108 073902
[13] Xi L, Li X Y, Zhou J J, Du J H, Ma J H, Wang Z, Lu J M, Zuo Y L, Xue D S and Li F S 2011 Mater. Sci. Eng. B 176 1317
[14] Nogués J and Schuller I K 1999 J. Magn. Magn. Mater. 192 203
[15] Kuanr B K, Camley R E and Celinski Z 2003 J. Appl. Phys. 93 7723
[16] Queste S, Dubourg S, Achera O, Soret J C, Barholz K U and Mattheis R 2005 J. Magn. Magn. Mater. 288 60
[17] Lamy Y and Viala B 2006 IEEE Trans. Magn. 42 3332
[18] Xi L, Zhang Z, Lu J M, Liu J, Sun Q J, Zhou J J, Ge S H and Li F S 2010 Phys. B 405 682
[19] Li C Y, Chai G Z, Yang C C, Wang W F and Xue D S 2015 Sci. Rep. 5 17023
[20] Phuoc N N, Chai G Z and Ong C K 2012 J. Appl. Phys. 112 113908
[21] Zhan Q F, Haesendonck C V, Vandezande S and Temst K 2009 Appl. Phys. Lett. 94 042504
[22] Prinz G A, Rado G T and Krebs J J 1982 J. Appl. Phys. 53 2087
[23] Oliver S A, Vittoria C, Schlomann E, Van Hook H J and Tustison R W 1988 J. Appl. Phys. 63 3802
[24] Heinrich B, Purcell S T, Dutcher J R, Urquhart K B, Cochran J F and Arrott A S 1988 Phys. Rev. B 38 12 879
[25] Hurdequint H 1991 J. Magn. Magn. Mater. 93 336
[26] da Silva E C, Meckenstock R, von Geisau O, Kordecki R, Pelzl J, Wolf J A and Griinberg P 1993 J. Magn. Magn. Mater. 121 528
[27] Naik R, Kota C, Payson J S and Dunifer G L 1993 Phys. Rev. B 48 1008
[28] Urban R, Woltersdorf G and Heinrich B 2001 Phys. Rev. Lett. 87 217204
[29] Woltersdorf G and Heinrich B 2004 Phys. Rev. B 69 184417
[30] Twisselmann D J and McMichael R D 2003 J. Appl. Phys. 93 6903
[31] Lindner J, Lenz K, Kosubek E, Baberschke K, Spoddig D, Meckenstock R, Pelzl J, Frait Z and Mills D L 2003 Phys. Rev. B 68 060102(R)
[32] Gerrits T, van den Berg H A M, Hohlfeld J, Bär L and Rasing T 2002 Nature 418 509
[33] Sun Z Z and Wang X R 2006 Phys. Rev. Lett. 97 077205
[34] Sun J Z 2006 IBM J. Res. Dev. 50 81
[35] Calleja J F, Menéndez J L, Cebollada A and Contreras C 2001 Jpn. J. Appl. Phys. 40 6829
[36] Qeemat G, He W, Li Y, Sun R, Li N, Yang X, Li Y, Gong Z Z, Xie Z K, Zhang X Q and Cheng Z H 2018 Chin. Phys. B 27 097504
[37] Ding Y, Klemmer T J and Crawford T M 2004 J. Appl. Phys. 96 2969
[38] Farle M F 1998 Rep. Prog. Phys. 61 755
[39] Schoen M A W, Thonig D, Schneider M L, Silva T J, Nembach H T, Eriksson O, Karis O and Shaw J M 2016 Nat. Phys. 12 839
[40] Wolfe J H, Kawakami R K, Ling W L, Qiu Z Q, Arias R and Mills D L 2001 J. Magn. Magn. Mater. 232 36
[41] Bubendorff J L, Zabrocki S, Garreau G, Hajjar S, Jaafar R, Berling D, Mehdauoui A, Pirri C and Gewinner G 2006 Europhys. Lett. 75 119
[42] Tang J, He W, Zhang Y S, Zhang W, Li Y, Ahmad S S, Zhang X Q and Cheng Z H 2017 AIP Adv. 7 056311
[43] Anisimov A N, Farle M, Poulopoulos P, Platow W, Baberschke K, Isberg P, Wäppling R, Niklasson A M N and Eriksson O 1999 Phys. Rev. Lett. 82 2390
[44] Pelzl J, Meckenstock R, Spoddig D, Schreiber F, Pflaum J and Frait Z 2003 J. Phys.: Condens. Matter 15 S451
[1] High repetition granular Co/Pt multilayers with improved perpendicular remanent magnetization for high-density magnetic recording
Zhi Li(李智), Kun Zhang(张昆), Ao Du(杜奥), Hongchao Zhang(张洪超), Weibin Chen(陈伟斌), Ning Xu(徐宁), Runrun Hao(郝润润), Shishen Yan(颜世申), Weisheng Zhao(赵巍胜), and Qunwen Leng(冷群文). Chin. Phys. B, 2023, 32(2): 026803.
[2] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[3] Thickness-dependent magnetic properties in Pt/[Co/Ni]n multilayers with perpendicular magnetic anisotropy
Chunjie Yan(晏春杰), Lina Chen(陈丽娜), Kaiyuan Zhou(周恺元), Liupeng Yang(杨留鹏), Qingwei Fu(付清为), Wenqiang Wang(王文强), Wen-Cheng Yue(岳文诚), Like Liang(梁力克), Zui Tao(陶醉), Jun Du(杜军),Yong-Lei Wang(王永磊), and Ronghua Liu(刘荣华). Chin. Phys. B, 2023, 32(1): 017503.
[4] Enhancement of spin-orbit torque efficiency by tailoring interfacial spin-orbit coupling in Pt-based magnetic multilayers
Wenqiang Wang(王文强), Gengkuan Zhu(朱耿宽), Kaiyuan Zhou(周恺元), Xiang Zhan(战翔), Zui Tao(陶醉), Qingwei Fu(付清为), Like Liang(梁力克), Zishuang Li(李子爽), Lina Chen(陈丽娜), Chunjie Yan(晏春杰), Haotian Li(李浩天), Tiejun Zhou(周铁军), and Ronghua Liu(刘荣华). Chin. Phys. B, 2022, 31(9): 097504.
[5] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[6] Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain
Jun Ren(任军), Junming Li(李军明), Sheng Zhang(张胜), Jun Li(李骏), Wenxia Su(苏文霞), Dunhui Wang(王敦辉), Qingqi Cao(曹庆琪), and Youwei Du(都有为). Chin. Phys. B, 2022, 31(7): 077502.
[7] Enhancement of magnetic and dielectric properties of low temperature sintered NiCuZn ferrite by Bi2O3-CuO additives
Jie Li(李颉), Bing Lu(卢冰), Ying Zhang(张颖), Jian Wu(武剑), Yan Yang(杨燕), Xue-Ning Han(韩雪宁), Dan-Dan Wen(文丹丹), Zheng Liang(梁峥), and Huai-Wu Zhang(张怀武). Chin. Phys. B, 2022, 31(4): 047502.
[8] The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy
Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
[9] Perpendicular magnetization and exchange bias in epitaxial NiO/[Ni/Pt]2 multilayers
Lin-Ao Huang(黄林傲), Mei-Yu Wang(王梅雨), Peng Wang(王鹏), Yuan Yuan(袁源), Ruo-Bai Liu(刘若柏), Tian-Yu Liu(刘天宇), Yu Lu(卢羽), Jia-Rui Chen(陈家瑞), Lu-Jun Wei(魏陆军), Wei Zhang(张维), Biao You(游彪), Qing-Yu Xu(徐庆宇), and Jun Du(杜军). Chin. Phys. B, 2022, 31(2): 027506.
[10] Gilbert damping in the layered antiferromagnet CrCl3
Xinlin Mi(米锌林), Ledong Wang(王乐栋), Qi Zhang(张琪), Yitong Sun(孙艺彤), Yufeng Tian(田玉峰), Shishen Yan(颜世申), and Lihui Bai(柏利慧). Chin. Phys. B, 2022, 31(2): 027505.
[11] Terahertz magnetic resonance in MnCr2O4 under high magnetic field
Peng Zhang(张朋), Kaibo He(贺凯博), Zheng Wang(王铮), Shile Zhang(张仕乐), Jianming Dai(戴建明), and Fuhai Su(苏付海). Chin. Phys. B, 2022, 31(10): 107502.
[12] Perpendicular magnetic anisotropy of Pd/Co2MnSi/NiFe2O4/Pd multilayers on F-mica substrates
Qingwang Bai(白青旺), Bin Guo(郭斌), Qin Yin(尹钦), and Shuyun Wang(王书运). Chin. Phys. B, 2022, 31(1): 017501.
[13] Theoretical investigation of ferromagnetic resonance in a ferromagnetic thin film with external stress anisotropy
Jieyu Zhou(周婕妤), Jianhong Rong(荣建红), Huan Wang(王焕), Guohong Yun(云国宏), Yanan Wang(王娅男), and Shufei Zhang(张舒飞). Chin. Phys. B, 2022, 31(1): 017601.
[14] Magnetic dynamics of two-dimensional itinerant ferromagnet Fe3GeTe2
Lijun Ni(倪丽君), Zhendong Chen(陈振东), Wei Li(李威), Xianyang Lu(陆显扬), Yu Yan(严羽), Longlong Zhang(张龙龙), Chunjie Yan(晏春杰), Yang Chen(陈阳), Yaoyu Gu(顾耀玉), Yao Li(黎遥), Rong Zhang(张荣), Ya Zhai(翟亚), Ronghua Liu(刘荣华), Yi Yang(杨燚), and Yongbing Xu(徐永兵). Chin. Phys. B, 2021, 30(9): 097501.
[15] Optimized growth of compensated ferrimagnetic insulator Gd3Fe5O12 with a perpendicular magnetic anisotropy
Heng-An Zhou(周恒安), Li Cai(蔡立), Teng Xu(许腾), Yonggang Zhao(赵永刚), and Wanjun Jiang(江万军). Chin. Phys. B, 2021, 30(9): 097503.
No Suggested Reading articles found!