|
|
Enhancement of spin-orbit torque efficiency by tailoring interfacial spin-orbit coupling in Pt-based magnetic multilayers |
Wenqiang Wang(王文强)1, Gengkuan Zhu(朱耿宽)1, Kaiyuan Zhou(周恺元)1, Xiang Zhan(战翔)1, Zui Tao(陶醉)1, Qingwei Fu(付清为)1, Like Liang(梁力克)1, Zishuang Li(李子爽)1, Lina Chen(陈丽娜)1,2,†, Chunjie Yan(晏春杰)1, Haotian Li(李浩天)1, Tiejun Zhou(周铁军)3,‡, and Ronghua Liu(刘荣华)1,§ |
1 National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China; 2 New Energy Technology Engineering Laboratory of Jiangsu Provence and School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; 3 Centre for Integrated Spintronic Devices, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China |
|
|
Abstract We study inserting Co layer thickness-dependent spin transport and spin-orbit torques (SOTs) in the Pt/Co/Py trilayers by spin-torque ferromagnetic resonance. The interfacial perpendicular magnetic anisotropy (IPMA) energy density ($K_{\rm s}= 2.7 $ erg/cm$^{2}$, 1 erg = 10$^{-7}$ J), which is dominated by interfacial spin-orbit coupling (ISOC) in the Pt/Co interface, total effective spin-mixing conductance $(G_{\mathrm{eff,tot}}^{\mathrm{\uparrow \downarrow }}=\mathrm{0.42\times }{10}^{15} \mathrm{\Omega }^{-1}\cdot\mathrm{m}^{-2}$) and two-magnon scattering ($\beta_{\mathrm{TMS}}= 0.46 {\mathrm{nm}}^{2}$) are first characterized, and the damping-like torque ($\xi_{\mathrm{DL}}= 0.103$) and field-like torque ($\xi _{\mathrm{FL}}=-0.017$) efficiencies are also calculated quantitatively by varying the thickness of the inserting Co layer. The significant enhancement of $\xi_{\mathrm{DL}}$ and $\xi_{\mathrm{FL}}$ in Pt/Co/Py than Pt/Py bilayer system originates from the interfacial Rashba-Edelstein effect due to the strong ISOC between Co-3d and Pt-5d orbitals at the Pt/Co interface. Additionally, we find a considerable out-of-plane spin polarization SOT, which is ascribed to the spin anomalous Hall effect and possible spin precession effect due to IPMA-induced perpendicular magnetization at the Pt/Co interface. Our results demonstrate that the ISOC of the Pt/Co interface plays a vital role in spin transport and SOTs-generation. Our finds offer an alternative approach to improve the conventional SOTs efficiencies and generate unconventional SOTs with out-of-plane spin polarization to develop low power Pt-based spintronic via tailoring the Pt/FM interface.
|
Received: 06 April 2022
Revised: 28 May 2022
Accepted manuscript online: 08 June 2022
|
PACS:
|
75.70.Tj
|
(Spin-orbit effects)
|
|
75.70.-i
|
(Magnetic properties of thin films, surfaces, and interfaces)
|
|
75.76.+j
|
(Spin transport effects)
|
|
75.78.-n
|
(Magnetization dynamics)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774150, 12074178, 11874135, and 12004171), the Applied Basic Research Programs of the Science and Technology Commission Foundation of Jiangsu Province, China (Grant No. BK20200309), the Open Research Fund of Jiangsu Provincial Key Laboratory for Nanotechnology, Key Research and Development Program of Zhejiang Province, China (Grant No. 2021C01039), and the Scientific Foundation of Nanjing University of Posts and Telecommunications (Grant No. NY220164). |
Corresponding Authors:
Lina Chen, Tiejun Zhou, Ronghua Liu
E-mail: chenlina@njupt.edu.cn;tjzhou@hdu.edu.cn;rhliu@nju.edu.cn
|
Cite this article:
Wenqiang Wang(王文强), Gengkuan Zhu(朱耿宽), Kaiyuan Zhou(周恺元), Xiang Zhan(战翔), Zui Tao(陶醉), Qingwei Fu(付清为), Like Liang(梁力克), Zishuang Li(李子爽), Lina Chen(陈丽娜), Chunjie Yan(晏春杰), Haotian Li(李浩天), Tiejun Zhou(周铁军), and Ronghua Liu(刘荣华) Enhancement of spin-orbit torque efficiency by tailoring interfacial spin-orbit coupling in Pt-based magnetic multilayers 2022 Chin. Phys. B 31 097504
|
[1] Liu L Q, Moriyama T, Ralph D C and Buhrman R A 2011 Phys. Rev. Lett. 106 036601 [2] Liu R H, Lim W L and Urazhdin S 2014 Phys. Rev. B 89 220409 [3] Wang M, Guo Q, Xu X, Zhang Z, Ren Z, Zhu L, Meng K, Chen J, Wu Y, Miao J and Jiang Y 2020 Adv. Electron. Mater. 6 2000229 [4] Zhu L, Xu X, Wang M, Meng K, Wu Y, Chen J, Miao J and Jiang Y 2020 Appl. Phys. Lett. 117 112401 [5] Feng X, Zhang Q, Zhang H, Zhang Y, Rui, Lu B, Cao J and Fan X 2019 Chin. Phys. B 28 107105 [6] Li S and Zhu T 2020 Chin. Phys. B 29 087102 [7] Liu J, Wang Z, Xu T, Zhou H, Zhao L, Je S G, Im M Y, Fang L and Jiang W 2022 Chin. Phys. Lett. 39 017501 [8] Zheng Z, Zhang Y, Zhu D, Zhang K, Feng X, He Y, Chen L, Zhang Z, Liu D, Zhang Y, Amiri P K and Zhao W 2020 Chin. Phys. B 29 078505 [9] Wang M, Cai W, Zhu D, Wang Z, Kan J, Zhao Z, Cao K, Wang Z, Zhang Y, Zhang T, Park C, Wang J P, Fert A and Zhao W 2018 Nat. Electron. 1 582 [10] Chen L, Urazhdin S, Du Y W and Liu R H 2019 Phys. Rev. Appl. 11 064038 [11] Li L, Chen L, Liu R and Du Y 2020 Chin. Phys. B 29 117102 [12] Jiang W, Chen L, Zhou K, Li L, Fu Q, Du Y and Liu R H 2019 Appl. Phys. Lett. 115 192403 [13] Chen Y B, Yang X K, Yan T, Wei B, Cui H Q, Li C, Liu J H, Song M X and Cai L 2020 Chin. Phys. Lett. 37 078501 [14] Zheng C, Chen H H, Zhang X, Zhang Z and Liu Y 2019 Chin. Phys. B 28 037503 [15] Zhao Y, Yang G, Dong B, Wang S, Wang C, Sun Y, Zhang J and Yu G 2016 Chin. Phys. B 25 077501 [16] Ye X G, Zhu P F, Xu W Z, Shang N, Liu K and Liao Z M 2022 Chin. Phys. Lett. 39 037303 [17] Amin V P and Stiles M D 2016 Phys. Rev. B 94 104419 [18] Hirsch J E 1999 Phys. Rev. Lett. 83 1834 [19] Pai C F, Nguyen M H, Belvin C, Vilela-Leão L H, Ralph D C and Buhrman R A 2014 Appl. Phys. Lett. 104 082407 [20] Gweon H K, Lee K J and Lim S H 2019 Appl. Phys. Lett. 115 122405 [21] Ni L, Chen Z, Lu X, Yan Y, Jin L, Zhou J, Yue W, Zhang Z, Zhang L, Wang W, Wang Y L, Ruan X, Liu W, He L, Zhang R, Zhang H, Liu B, Liu R, Meng H and Xu Y 2020 Appl. Phys. Lett. 117 112402 [22] Liu F, Zhou C, Tang R, Chai G and Jiang C 2021 J. Magn. Magn. Mater. 540 168462 [23] Yang L, Fei Y, Zhou K, Chen L, Fu Q, Li L, Yan C, Li H, Du Y and Liu R 2021 Appl. Phys. Lett. 118 032405 [24] He C, Chen Q, Shen S, Wei J, Xu H, Zhao Y, Yu G and Wang S 2021 Chin. Phys. B 30 037503 [25] Peng W L, Zhang J Y, Feng G N, Xu X L, Yang C, Jia Y L and Yu G H 2019 Appl. Phys. Lett. 115 092402 [26] Zhang W, Han W, Jiang X, Yang S H and Stuart Parkin S P 2015 Nat. Phys. 11 496 [27] Shu X, Zhou J, Liu L, Lin W, Zhou C, Chen S, Xie Q, Ren L, Yu X, Yang H and Chen J 2020 Phys. Rev. Appl. 14 054056 [28] Zhu L, Zhu L, Ralph D C and Buhrman R A 2020 Phys. Rev. Appl. 13 034038 [29] Wang Y, Ramaswamy R and Yang H 2018 J. Phys. D:Appl. Phys. 51 273002 [30] Johnson M T, Bloemen P J H, Aden Broeder F J and de Vries J J 1996 Rep. Prog. Phys. 59 1409 [31] Yang M, Lu X, Liu B, Ruan X, Zhang J, Zhang X, Huang D, Wu J, Du J, Liu B, Meng H, He L and Xu Y 2020 Chin. Phys. Lett. 37 107502 [32] Wang Y, Deorani P, Qiu X, Kwon J H and Yang H 2014 Appl. Phys. Lett. 105 152412 [33] Pai C F, Ou Y, Vilela-Leão L H, Ralph D C and Buhrman R A 2015 Phys. Rev. B 92 064426 [34] Moriya H, Musha A and Ando K 2021 Appl. Phys. Express 14 063001 [35] Nakajima N K T, Shidara T, Miyauchi H, Fukutani H, Fujimori A, Iio K, Katayama T, Nyvlt M and Suzuki Y 1998 Phys. Rev. Lett. 81 5229 [36] Li R, Li Y, Sheng Y and Wang K 2021 Chin. Phys. B 30 028506 [37] Wang J, Tu H Q, Liang J, Zhai Y, Liu R B, Yuan Y, Huang L A, Liu T Y, Liu B, Meng H, You B, Zhang W, Xu Y B and Du J 2020 Chin. Phys. B 29 107503 [38] Fu Q, Zhou K, Chen L, Xu Y, Zhou T, Wang D, Chi K, Meng H, Liu B, Liu R and Du Y 2020 Chin. Phys. Lett. 37 117501 [39] Zhu L, Ralph D C and Buhrman R A 2019 Phys. Rev. Lett. 123 057203 [40] Hayashi H, Musha A, Sakimura H and Ando K 2021 Phys. Rev. Res. 3 013042 [41] Chen Q, Lv W, Li S, Lv W, Cai J, Zhu Y, Wang J, Li R, Zhang B and Zeng Z 2021 Chin. Phys. B 30 097506 [42] Wang W, Fu Q, Zhou K, Chen L, Yang L, Li Z, Tao Z, Yan C, Liang L, Zhan X, Du Y and Liu R 2022 Phys. Rev. Appl. 17 034026 [43] Chen X, Shi S, Shi G, Fan X, Song C, Zhou X, Bai H, Liao L, Zhou Y, Zhang H, Li A, Chen Y, Han X, Jiang S, Zhu Z, Wu H, Wang X, Xue D, Yang H and Pan F 2021 Nat. Mater. 20 800 [44] Amin V P, Zemen J and Stiles M D 2018 Phys. Rev. Lett. 121 136805 [45] Davidson A, Amin V P, Aljuaid W S, Haney P M and Fan X 2020 Phys. Lett. A 384 126228 [46] Humphries A M, Wang T, Edwards E R J, Allen S R, Shaw J M, Nembach H T, Xiao J Q, Silva T J and Fan X 2017 Nat. Commun. 8 911 [47] Iihama S, Taniguchi T, Yakushiji K, Fukushima A, Shiota Y, Tsunegi S, Hiramatsu R, Yuasa S, Suzuki Y and Kubota H 2018 Nat. Electron. 1 120 [48] Cespedes-Berrocal D, Damas H, Petit-Watelot S, Maccariello D, Tang P, Arriola-Cordova A, Vallobra P, Xu Y, Bello J L, Martin E, Migot S, Ghanbaja J, Zhang S, Hehn M, Mangin S, Panagopoulos C, Cros V, Fert A and Rojas-Sanchez J C 2021 Adv. Mater. 33 2007047 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|