Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain
Jun Ren(任军)1, Junming Li(李军明)1, Sheng Zhang(张胜)1, Jun Li(李骏)1, Wenxia Su(苏文霞)1, Dunhui Wang(王敦辉)1,2,†, Qingqi Cao(曹庆琪)1, and Youwei Du(都有为)1
1 National Laboratory of Solid State Microstructures and Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing 210093, China; 2 Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China
Abstract Voltage control magnetism has been widely studied due to its potential applications in the next generation of information technology. PMN-PT, as a single crystal ferroelectric substrate, has been widely used in the study of voltage control magnetism because of its excellent piezoelectric properties. However, most of the research based on PMN-PT only studies the influence of a single tensile (or compressive) stress on the magnetic properties due to the asymmetry of strain. In this work, we show the effect of different strains on the magnetic anisotropy of an Fe19Ni81/(011) PMN-PT heterojunction. More importantly, the (011) cut PMN-PT generates non-volatile strain, which provides an advantage when investigating the voltage manipulation of RF/microwave magnetic devices. As a result, a ferromagnetic resonance field tunability of 70 Oe is induced in our sample by the non-volatile strain. Our results provide new possibilities for novel voltage adjustable RF/microwave magnetic devices and spintronic devices.
(Magnetic properties of thin films, surfaces, and interfaces)
Corresponding Authors:
Dunhui Wang
E-mail: wangdh@hdu.edu.cn
Cite this article:
Jun Ren(任军), Junming Li(李军明), Sheng Zhang(张胜), Jun Li(李骏), Wenxia Su(苏文霞), Dunhui Wang(王敦辉), Qingqi Cao(曹庆琪), and Youwei Du(都有为) Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain 2022 Chin. Phys. B 31 077502
[1] Song C, Cui B, Li F, Zhou X and Pan F 2017 Prog. Mater. Sci.87 33 [2] Fiebig M 2005 J. Phys. D-Appl. Phys.38 R123 [3] Scott J F 2007 Nat. Mater.6 256 [4] Bur A, Zhao P, Mohanchandra K P, Wong K, Wang K L, Lynch C S and Carman G P 2011 Appl. Phys. Lett.98 012504 [5] Cherifi R O, Ivanovskaya V, Phillips L C, Zobelli A, Infante I C, Jacquet E, Garcia V, Fusil S, Briddon P R, Guiblin N, Mougin A, Unal A A, Kronast F, Valencia S, Dkhil B, Barthelemy A and Bibes M 2014 Nat. Mater.13 345 [6] Chu Y H, Martin L W, Holcomb M B, Gajek M, Han S J, He Q, Balke N, Yang C H, Lee D, Hu W, Zhan Q, Yang P L, Fraile-Rodríguez A, Scholl A, Wang S X and Ramesh R 2008 Nat. Mater.7 478 [7] Ganguly A, Azzawi S, Saha S, King J A, Rowan-Robinson R M, Hindmarch A T, Sinha J, Atkinson D and Barman A 2015 Sci. Rep.5 17596 [8] Li P, Chen A, Li D, Zhao Y, Zhang S, Yang L, Liu Y, Zhu M, Zhang H and Han X 2014 Adv Mater26 4320 [9] Liu M, Hao L, Jin T, Cao J, Bai J, Wu D, Wang Y and Wei F 2015 Appl. Phys. Express8 063006 [10] Taniyama T 2015 J. Phys.-Condes. Matter27 504001 [11] Guo Y, Luo H, Chen K, Xu H, Zhang X and Yin Z 2002 J. Appl. Phys.92 6134 [12] Luo L, Wang H, Tang Y, Zhao X, Feng Z, Lin D and Luo H 2006 J. Appl. Phys.99 024104 [13] Zhao P, Bao M, Bur A, Hockel J L, Wong K, Mohanchandra K P, Lynch C S and Carman G P 2011 J. Appl. Phys.109 124101 [14] Sheng Z G, Gao J and Sun Y P 2009 Phys. Rev. B79 174437 [15] Yang Y, Luo Z L, Meng Yang M, Huang H, Wang H, Bao J, Pan G, Gao C, Hao Q, Wang S, Jokubaitis M, Zhang W, Xiao G, Yao Y, Liu Y and Li X G 2013 Appl. Phys. Lett.102 [16] Liu M, Obi O, Lou J, Chen Y, Cai Z, Stoute S, Espanol M, Lew M, Situ X, Ziemer K S, Harris V G and Sun N X 2009 Adv. Funct. Mater.19 1826 [17] Liu M, Howe B M, Grazulis L, Mahalingam K, Nan T, Sun N X and Brown G J 2013 Adv. Mater.25 4886 [18] Zhou W, Ma C, Gan Z, Zhang Z, Wang X, Tan W and Wang D 2017 Appl. Phys. Lett.111 052401 [19] Zhao X, Wen J, Yang B, Zhu H, Cao Q, Wang D, Qian Z and Du Y 2017 ACS Appl. Mater. Interfaces9 36038 [20] Gong Y Y, Wang D H, Cao Q Q, Liu E K, Liu J and Du Y W 2015 Adv. Mater.27 801 [21] Zhao X, Hu Z, Yang Q, Peng B, Zhou Z and Liu M 2018 Chin. Phys. B27 097505 [22] Zhou Z, Peng B, Zhu M and Liu M 2016 J. Adv. Dielectr.06 1630005 [23] Skrotskii G V and Kurbatov L V 1966 Ferromagnetic Resonance, Pergamon Press, Oxford 1966 [24] Nan T, Zhou Z, Liu M, Yang X, Gao Y, Assaf B A, Lin H, Velu S, Wang X, Luo H, Chen J, Akhtar S, Hu E, Rajiv R, Krishnan K, Sreedhar S, Heiman D, Howe B M, Brown G J and Sun N X 2014 Sci. Rep.4 03688 [25] Yin Y, Pan F, Ahlberg M, Ranjbar M, Dürrenfeld P, Houshang A, Haidar M, Bergqvist L, Zhai Y, Dumas R K, Delin A and Åkerman J 2015 Phys. Rev. B92 024427 [26] Zhou Z, Grocke G, Yanguas-Gil A, Wang X, Gao Y, Sun N, Howe B and Chen X 2016 Appl. Phys. Lett.108 182907 [27] Nan T, Liu M, Ren W, Ye Z G and Sun N X 2014 Sci. Rep.4 5931 [28] Sekiguchi K, Yamada K, Seo S M, Lee K J, Chiba D, Kobayashi K and Ono T 2010 Appl. Phys. Lett.97 022508 [29] Liu M, Obi O, Cai Z, Lou J, Yang G, Ziemer K S and Sun N X 2010 J. Appl. Phys.107 073916 [30] Liu M, Zhou Z, Nan T, Howe B M, Brown G J and Sun N X 2013 Adv. Mater.25 1435
The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
[9]
Gilbert damping in the layered antiferromagnet CrCl3 Xinlin Mi(米锌林), Ledong Wang(王乐栋), Qi Zhang(张琪), Yitong Sun(孙艺彤), Yufeng Tian(田玉峰), Shishen Yan(颜世申), and Lihui Bai(柏利慧). Chin. Phys. B, 2022, 31(2): 027505.
Magnetic dynamics of two-dimensional itinerant ferromagnet Fe3GeTe2 Lijun Ni(倪丽君), Zhendong Chen(陈振东), Wei Li(李威), Xianyang Lu(陆显扬), Yu Yan(严羽), Longlong Zhang(张龙龙), Chunjie Yan(晏春杰), Yang Chen(陈阳), Yaoyu Gu(顾耀玉), Yao Li(黎遥), Rong Zhang(张荣), Ya Zhai(翟亚), Ronghua Liu(刘荣华), Yi Yang(杨燚), and Yongbing Xu(徐永兵). Chin. Phys. B, 2021, 30(9): 097501.
No Suggested Reading articles found!
Viewed
Full text
Abstract
Cited
Altmetric
blogs
tweeters
Facebook pages
Wikipedia page
Google+ users
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.