Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(6): 067601    DOI: 10.1088/1674-1056/ab8dac
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effect of interface magnetization depinning on the frequency shift of ferromagnetic and spin wave resonance in YIG/GGG films

Fanqing Lin(林凡庆)1, Shouheng Zhang(张守珩)1, Guoxia Zhao(赵国霞)1, Hongfei Li(李洪飞)2, Weihua Zong(宗卫华)2, Shandong Li(李山东)1
1 College of Physics, Center for Marine Observation and Communications, Qingdao University, Qingdao 266071, China;
2 School of Electronics and Information, Qingdao University, Qingdao 266071, China
Abstract  Nowadays the yttrium iron garnet (Y3Fe5O12, YIG) films are widely used in the microwave and spin wave devices due to their low damping constant and long propagation distance for spin waves. However, the performances, especially the frequency stability, are seriously affected by the relaxation of the interface magnetic moments. In this study, the effect of out-of-plane magnetization depinning on the resonance frequency shift (Δfr) was investigated for 3-μm YIG films grown on Gd3Ga5O12 (GGG) (111) substrates by liquid-phase epitaxy. It is revealed that the ferromagnetic resonance (FMR) and spin wave propagation exhibit a very slow relaxation with relaxation time τ even longer than one hour under an out-of-plane external magnetic bias field. The Δfr span of 15.15-24.70 MHz is observed in out-of-plane FMR and forward volume spin waves. Moreover, the Δfr and τ depend on the magnetic field. The Δfr can be attributed to that the magnetic moments break away from the pinning layer at the YIG/GGG interface. The thickness of the pinning layer is estimated to be about 9.48 nm to 15.46 nm according to the frequency shifting. These results indicate that Δfr caused by the pinning layer should be addressed in the design of microwave and spin wave devices, especially in the transverse magnetic components.
Keywords:  yttrium iron garnet (YIG)      magnetization relaxation      ferromagnetic resonance      spin waves  
Received:  30 March 2020      Revised:  22 April 2020      Accepted manuscript online: 
PACS:  76.50.+g (Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance)  
  85.70.Ge (Ferrite and garnet devices)  
  75.10.Hk (Classical spin models)  
  75.25.-j (Spin arrangements in magnetically ordered materials (including neutron And spin-polarized electron studies, synchrotron-source x-ray scattering, etc.))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674187 and 51871127) and Technology on Electronic Test & Measurement Laboratory (Grant No. 6142001180103).
Corresponding Authors:  Shandong Li     E-mail:  lishd@qdu.edu.cn

Cite this article: 

Fanqing Lin(林凡庆), Shouheng Zhang(张守珩), Guoxia Zhao(赵国霞), Hongfei Li(李洪飞), Weihua Zong(宗卫华), Shandong Li(李山东) Effect of interface magnetization depinning on the frequency shift of ferromagnetic and spin wave resonance in YIG/GGG films 2020 Chin. Phys. B 29 067601

[1] Chumak A V, Vasyuchka V I, Serga A A and Hillebrands B 2015 Nat. Phys. 11 453
[2] Zhao X E, Hu Z Q, Yang Q, Peng B, Zhou Z Y and Liu M 2018 Chin. Phys. B 27 97505
[3] Kruglyak V V, Demokritov S O and Grundler D 2010 J. Phys. D: Appl. Phys. 43 264001
[4] Gu W J, Pan J and Hu J G 2012 Acta Phys. Sin. 61 167501 (in Chinese)
[5] Davies C S, Francis A, Sadovnikov A V, Chertopalov S V, Bryan M T, Grishin S V, Allwood D A, Sharaevskii Y P, Nikitov S A and Kruglyak V V 2015 Phys. Rev. B 92 020408
[6] Demidov V E, Urazhdin S, Zholud A, Sadovnikov A V, Slavin A N and Demokritov S O 2015 Sci. Rep. 5 8578
[7] Sadovnikov A V, Beginin E N, Odincov S A, Sheshukova S E, Sharaevskii Y P, Stognij A I and Nikitov S A 2016 Appl. Phys. Lett. 108 172411
[8] Shi Z P, Liu X M and Li S D 2017 Chin. Phys. B 26 097601
[9] Sadovnikov A V, Grachev A A, Sheshukova S E, Sharaevskii Y P, Serdobintsev A A, Mitin D M and Nikitov S A 2018 Phys. Rev. Lett. 120 257203
[10] Sadovnikov A V, Beginin E N, Sheshukova S E, Sharaevskii Y P, Stognij A I, Novitski N N, Sakharov V K, Khivintsev Y V and Nikitov S A 2019 Phys. Rev. B 99 054424
[11] Serga A A, Chumak A V and Hillebrands B 2010 J. Phys. D: Appl. Phys. 43 264002
[12] Lenk B, Ulrichs H, Garbs F and Munzenberg M 2011 Phys. Rep. 507 107
[13] Nikitov S A, Kalyabin D V, Lisenkov I V, Slavin A, Barabanenkov Y N, Osokin S A, Sadovnikov A V, Beginin E N, Morozova M A, Sharaevsky Y P, Filimonov Y A, Khivintsev Y V, Vysotsky S L, Sakharov V K and Pavlov E S 2015 Phys. Usp. 58 1002
[14] Chumak A V, Serga A A and Hillebrands B 2017 J. Phys. D: Appl. Phys. 50 244001
[15] Qin H J, Hamalainen S J, Arjas K, Witteveen J and van Dijken S 2018 Phys. Rev. B 98 224422
[16] Lv G, Zhang H and Hou Z W 2018 Acta Phys. Sin. 67 177502 (in Chinese)
[17] Qiu Z Y and Hou D Z 2019 Chin. Phys. B 28 88504
[18] Vogt K, Fradin F Y, Pearson J E, Sebastian T, Bader S D, Hillebrands B, Hoffmann A and Schultheiss H 2014 Nat. Commun. 5 3727
[19] Chumak A V, Serga A A and Hillebrands B 2014 Nat. Commun. 5 4700
[20] Wagner K, Kakay A, Schultheiss K, Henschke A, Sebastian T and Schultheiss H 2016 Nat. Nanotechnol. 11 432
[21] Ganzhorn K, Klingler S, Wimmer T, Geprags S, Gross R, Huebl H and Goennenwein S T B 2016 Appl. Phys. Lett. 109 022405
[22] Bang W, Lim J, Trossman J, Tsai C C and Ketterson J B 2018 J. Magn. Magn. Mater. 456 241
[23] Klingler S, Amin V, Geprags S, Ganzhorn K, Maier-Flaig H, Althammer M, Huebl H, Gross R, McMichael R D, Stiles M D, Goennenwein S T B and Weiler M 2018 Phys. Rev. Lett. 120 127201
[24] Klingler S, Pirro P, Brächer T, Leven B, Hillebrands B and Chumak A V 2015 Appl. Phys. Lett. 106 212406
[25] Mihalceanu L, Vasyuchka V I, Bozhko D A, Langner T, Nechiporuk A Y, Romanyuk V F, Hillebrands B and Serga A A 2018 Phys. Rev. B 97 214405
[26] Wang G, Liu H F, Wu H, Li X N, Qiu H C, Yang Y, Qu B J, Ren T L, Han X F, Zhang R Y and Wang H 2016 Appl. Phys. Lett. 109 162405
[27] Gallagher J C, Yang A S, Brangham J T, Esser B D, White S P, Page M R, Meng K Y, Yu S S, Adur R, Ruane W, Dunsiger S R, McComb D W, Yang F Y and Hammel P C 2016 Appl. Phys. Lett. 109 072401
[28] Howe B M, Emori S, Jeon H M, Oxholm T M, Jones J G, Mahalingam K, Zhuang Y, Sun N X and Brown G J 2015 IEEE Magn. Lett. 6 3500504
[29] Lee S, Grudichak S, Sklenar J, Tsai C C, Jang M, Yang Q H, Zhang H W and Ketterson J B 2016 J. Appl. Phys. 120 033905
[30] Kajiwara Y, Harii K, Takahashi S, Ohe J, Uchida K, Mizuguchi M, Umezawa H, Kawai H, Ando K, Takanashi K, Maekawa S and Saitoh E 2010 Nature 464 262
[31] Nakayama H, Althammer M, Chen Y T, Uchida K, Kajiwara Y, Kikuchi D, Ohtani T, Geprags S, Opel M, Takahashi S, Gross R, Bauer G E W, Goennenwein S T B and Saitoh E 2013 Phys. Rev. Lett. 110 206601
[32] Uchida K, Xiao J, Adachi H, Ohe J, Takahashi S, Ieda J, Ota T, Kajiwara Y, Umezawa H, Kawai H, Bauer G E W, Maekawa S and Saitoh E 2010 Nat. Mater. 9 894
[33] Padron-Hernandez E, Azevedo A and Rezende S M 2011 Phys. Rev. Lett. 107 197203
[34] Wang P, Zhou L F, Jiang S W, Luan Z Z, Shu D J, Ding H F and Wu D 2018 Phys. Rev. Lett. 120 047201
[35] Liu C P, Chen J L, Liu T, Heimbach F, Yu H M, Xiao Y, Hu J F, Liu M C, Chang H C, Stueckler T, Tu S, Zhang Y G, Zhang Y, Gao P, Liao Z M, Yu D P, Xia K, Lei N, Zhao W S and Wu M Z 2018 Nat. Commun. 9 738
[36] Damon R W and van de Vaart H 1965 J. Appl. Phys. 36 3453
[1] Enhancement of spin-orbit torque efficiency by tailoring interfacial spin-orbit coupling in Pt-based magnetic multilayers
Wenqiang Wang(王文强), Gengkuan Zhu(朱耿宽), Kaiyuan Zhou(周恺元), Xiang Zhan(战翔), Zui Tao(陶醉), Qingwei Fu(付清为), Like Liang(梁力克), Zishuang Li(李子爽), Lina Chen(陈丽娜), Chunjie Yan(晏春杰), Haotian Li(李浩天), Tiejun Zhou(周铁军), and Ronghua Liu(刘荣华). Chin. Phys. B, 2022, 31(9): 097504.
[2] Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain
Jun Ren(任军), Junming Li(李军明), Sheng Zhang(张胜), Jun Li(李骏), Wenxia Su(苏文霞), Dunhui Wang(王敦辉), Qingqi Cao(曹庆琪), and Youwei Du(都有为). Chin. Phys. B, 2022, 31(7): 077502.
[3] Enhancement of magnetic and dielectric properties of low temperature sintered NiCuZn ferrite by Bi2O3-CuO additives
Jie Li(李颉), Bing Lu(卢冰), Ying Zhang(张颖), Jian Wu(武剑), Yan Yang(杨燕), Xue-Ning Han(韩雪宁), Dan-Dan Wen(文丹丹), Zheng Liang(梁峥), and Huai-Wu Zhang(张怀武). Chin. Phys. B, 2022, 31(4): 047502.
[4] Gilbert damping in the layered antiferromagnet CrCl3
Xinlin Mi(米锌林), Ledong Wang(王乐栋), Qi Zhang(张琪), Yitong Sun(孙艺彤), Yufeng Tian(田玉峰), Shishen Yan(颜世申), and Lihui Bai(柏利慧). Chin. Phys. B, 2022, 31(2): 027505.
[5] Angle-dependent spin wave spectra of permalloy ring arrays
Shuxuan Wu(吴书旋), Zengtai Zhu(朱增泰), Yunxu Ma(马云旭), Jinwu Wei(魏晋武), Senfu Zhang(张森富), Jianbo Wang(王建波), and Qingfang Liu(刘青芳). Chin. Phys. B, 2022, 31(11): 117505.
[6] Experimental observation of interlayer perpendicular standing spin wave mode with low damping in skyrmion-hosting [Pt/Co/Ta]10 multilayer
Zhen-Dong Chen(陈振东), Mei-Yang Ma(马眉扬), Sen-Fu Zhang(张森富), Mang-Yuan Ma(马莽原), Zi-Zhao Pan(潘咨兆), Xi-Xiang Zhang(张西祥), Xue-Zhong Ruan(阮学忠), Yong-Bing Xu(徐永兵), and Fu-Sheng Ma(马付胜). Chin. Phys. B, 2022, 31(11): 117501.
[7] Terahertz magnetic resonance in MnCr2O4 under high magnetic field
Peng Zhang(张朋), Kaibo He(贺凯博), Zheng Wang(王铮), Shile Zhang(张仕乐), Jianming Dai(戴建明), and Fuhai Su(苏付海). Chin. Phys. B, 2022, 31(10): 107502.
[8] Theoretical investigation of ferromagnetic resonance in a ferromagnetic thin film with external stress anisotropy
Jieyu Zhou(周婕妤), Jianhong Rong(荣建红), Huan Wang(王焕), Guohong Yun(云国宏), Yanan Wang(王娅男), and Shufei Zhang(张舒飞). Chin. Phys. B, 2022, 31(1): 017601.
[9] Magnetic dynamics of two-dimensional itinerant ferromagnet Fe3GeTe2
Lijun Ni(倪丽君), Zhendong Chen(陈振东), Wei Li(李威), Xianyang Lu(陆显扬), Yu Yan(严羽), Longlong Zhang(张龙龙), Chunjie Yan(晏春杰), Yang Chen(陈阳), Yaoyu Gu(顾耀玉), Yao Li(黎遥), Rong Zhang(张荣), Ya Zhai(翟亚), Ronghua Liu(刘荣华), Yi Yang(杨燚), and Yongbing Xu(徐永兵). Chin. Phys. B, 2021, 30(9): 097501.
[10] Enhanced spin-orbit torque efficiency in Pt100-xNix alloy based magnetic bilayer
Congli He(何聪丽), Qingqiang Chen(陈庆强), Shipeng Shen(申世鹏), Jinwu Wei(魏晋武), Hongjun Xu(许洪军), Yunchi Zhao(赵云驰), Guoqiang Yu(于国强), and Shouguo Wang(王守国). Chin. Phys. B, 2021, 30(3): 037503.
[11] Spin waves and transverse domain walls driven by spin waves: Role of damping
Zi-Xiang Zhao(赵梓翔), Peng-Bin He(贺鹏斌), Meng-Qiu Cai(蔡孟秋), Zai-Dong Li(李再东). Chin. Phys. B, 2020, 29(7): 077502.
[12] Improvement of high-frequency properties of Co2FeSi Heusler films by ultrathin Ru underlayer
Cuiling Wang(王翠玲), Shouheng Zhang(张守珩), Shandong Li(李山东), Honglei Du(杜洪磊), Guoxia Zhao(赵国霞), Derang Cao(曹德让). Chin. Phys. B, 2020, 29(4): 046202.
[13] Giant anisotropy of magnetic damping and significant in-plane uniaxial magnetic anisotropy in amorphous Co40Fe40B20 films on GaAs(001)
Ji Wang(王佶), Hong-Qing Tu(涂宏庆), Jian Liang(梁健), Ya Zhai(翟亚), Ruo-Bai Liu(刘若柏), Yuan Yuan(袁源), Lin-Ao Huang(黄林傲), Tian-Yu Liu(刘天宇), Bo Liu(刘波)†, Hao Meng(孟皓), Biao You(游彪), Wei Zhang(张维), Yong-Bing Xu(徐永兵), and Jun Du(杜军)‡. Chin. Phys. B, 2020, 29(10): 107503.
[14] Thickness-dependent magnetic anisotropy in obliquely deposited Fe(001)/Pd thin film bilayers probed by VNA-FMR
Qeemat Gul, Wei He(何为), Yan Li(李岩), Rui Sun(孙瑞), Na Li(李娜), Xu Yang(杨旭), Yang Li(李阳), Zi-Zhao Gong(弓子召), Zong-Kai Xie(谢宗凯), Xiang-Qun Zhang(张向群), Zhao-Hua Cheng(成昭华). Chin. Phys. B, 2019, 28(7): 077502.
[15] Voltage control of ferromagnetic resonance and spin waves
Xinger Zhao(赵星儿), Zhongqiang Hu(胡忠强), Qu Yang(杨曲), Bin Peng(彭斌), Ziyao Zhou(周子尧), Ming Liu(刘明). Chin. Phys. B, 2018, 27(9): 097505.
No Suggested Reading articles found!