1 College of Physics, Center for Marine Observation and Communications, Qingdao University, Qingdao 266071, China; 2 School of Electronics and Information, Qingdao University, Qingdao 266071, China
Abstract Nowadays the yttrium iron garnet (Y3Fe5O12, YIG) films are widely used in the microwave and spin wave devices due to their low damping constant and long propagation distance for spin waves. However, the performances, especially the frequency stability, are seriously affected by the relaxation of the interface magnetic moments. In this study, the effect of out-of-plane magnetization depinning on the resonance frequency shift (Δfr) was investigated for 3-μm YIG films grown on Gd3Ga5O12 (GGG) (111) substrates by liquid-phase epitaxy. It is revealed that the ferromagnetic resonance (FMR) and spin wave propagation exhibit a very slow relaxation with relaxation time τ even longer than one hour under an out-of-plane external magnetic bias field. The Δfr span of 15.15-24.70 MHz is observed in out-of-plane FMR and forward volume spin waves. Moreover, the Δfr and τ depend on the magnetic field. The Δfr can be attributed to that the magnetic moments break away from the pinning layer at the YIG/GGG interface. The thickness of the pinning layer is estimated to be about 9.48 nm to 15.46 nm according to the frequency shifting. These results indicate that Δfr caused by the pinning layer should be addressed in the design of microwave and spin wave devices, especially in the transverse magnetic components.
(Spin arrangements in magnetically ordered materials (including neutron And spin-polarized electron studies, synchrotron-source x-ray scattering, etc.))
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674187 and 51871127) and Technology on Electronic Test & Measurement Laboratory (Grant No. 6142001180103).
Corresponding Authors:
Shandong Li
E-mail: lishd@qdu.edu.cn
Cite this article:
Fanqing Lin(林凡庆), Shouheng Zhang(张守珩), Guoxia Zhao(赵国霞), Hongfei Li(李洪飞), Weihua Zong(宗卫华), Shandong Li(李山东) Effect of interface magnetization depinning on the frequency shift of ferromagnetic and spin wave resonance in YIG/GGG films 2020 Chin. Phys. B 29 067601
[1]
Chumak A V, Vasyuchka V I, Serga A A and Hillebrands B 2015 Nat. Phys. 11 453
[2]
Zhao X E, Hu Z Q, Yang Q, Peng B, Zhou Z Y and Liu M 2018 Chin. Phys. B 27 97505
[3]
Kruglyak V V, Demokritov S O and Grundler D 2010 J. Phys. D: Appl. Phys. 43 264001
[4]
Gu W J, Pan J and Hu J G 2012 Acta Phys. Sin. 61 167501 (in Chinese)
[5]
Davies C S, Francis A, Sadovnikov A V, Chertopalov S V, Bryan M T, Grishin S V, Allwood D A, Sharaevskii Y P, Nikitov S A and Kruglyak V V 2015 Phys. Rev. B 92 020408
[6]
Demidov V E, Urazhdin S, Zholud A, Sadovnikov A V, Slavin A N and Demokritov S O 2015 Sci. Rep. 5 8578
[7]
Sadovnikov A V, Beginin E N, Odincov S A, Sheshukova S E, Sharaevskii Y P, Stognij A I and Nikitov S A 2016 Appl. Phys. Lett. 108 172411
[8]
Shi Z P, Liu X M and Li S D 2017 Chin. Phys. B 26 097601
[9]
Sadovnikov A V, Grachev A A, Sheshukova S E, Sharaevskii Y P, Serdobintsev A A, Mitin D M and Nikitov S A 2018 Phys. Rev. Lett. 120 257203
[10]
Sadovnikov A V, Beginin E N, Sheshukova S E, Sharaevskii Y P, Stognij A I, Novitski N N, Sakharov V K, Khivintsev Y V and Nikitov S A 2019 Phys. Rev. B 99 054424
[11]
Serga A A, Chumak A V and Hillebrands B 2010 J. Phys. D: Appl. Phys. 43 264002
[12]
Lenk B, Ulrichs H, Garbs F and Munzenberg M 2011 Phys. Rep. 507 107
[13]
Nikitov S A, Kalyabin D V, Lisenkov I V, Slavin A, Barabanenkov Y N, Osokin S A, Sadovnikov A V, Beginin E N, Morozova M A, Sharaevsky Y P, Filimonov Y A, Khivintsev Y V, Vysotsky S L, Sakharov V K and Pavlov E S 2015 Phys. Usp. 58 1002
[14]
Chumak A V, Serga A A and Hillebrands B 2017 J. Phys. D: Appl. Phys. 50 244001
[15]
Qin H J, Hamalainen S J, Arjas K, Witteveen J and van Dijken S 2018 Phys. Rev. B 98 224422
[16]
Lv G, Zhang H and Hou Z W 2018 Acta Phys. Sin. 67 177502 (in Chinese)
[17]
Qiu Z Y and Hou D Z 2019 Chin. Phys. B 28 88504
[18]
Vogt K, Fradin F Y, Pearson J E, Sebastian T, Bader S D, Hillebrands B, Hoffmann A and Schultheiss H 2014 Nat. Commun. 5 3727
[19]
Chumak A V, Serga A A and Hillebrands B 2014 Nat. Commun. 5 4700
[20]
Wagner K, Kakay A, Schultheiss K, Henschke A, Sebastian T and Schultheiss H 2016 Nat. Nanotechnol. 11 432
[21]
Ganzhorn K, Klingler S, Wimmer T, Geprags S, Gross R, Huebl H and Goennenwein S T B 2016 Appl. Phys. Lett. 109 022405
[22]
Bang W, Lim J, Trossman J, Tsai C C and Ketterson J B 2018 J. Magn. Magn. Mater. 456 241
[23]
Klingler S, Amin V, Geprags S, Ganzhorn K, Maier-Flaig H, Althammer M, Huebl H, Gross R, McMichael R D, Stiles M D, Goennenwein S T B and Weiler M 2018 Phys. Rev. Lett. 120 127201
[24]
Klingler S, Pirro P, Brächer T, Leven B, Hillebrands B and Chumak A V 2015 Appl. Phys. Lett. 106 212406
[25]
Mihalceanu L, Vasyuchka V I, Bozhko D A, Langner T, Nechiporuk A Y, Romanyuk V F, Hillebrands B and Serga A A 2018 Phys. Rev. B 97 214405
[26]
Wang G, Liu H F, Wu H, Li X N, Qiu H C, Yang Y, Qu B J, Ren T L, Han X F, Zhang R Y and Wang H 2016 Appl. Phys. Lett. 109 162405
[27]
Gallagher J C, Yang A S, Brangham J T, Esser B D, White S P, Page M R, Meng K Y, Yu S S, Adur R, Ruane W, Dunsiger S R, McComb D W, Yang F Y and Hammel P C 2016 Appl. Phys. Lett. 109 072401
[28]
Howe B M, Emori S, Jeon H M, Oxholm T M, Jones J G, Mahalingam K, Zhuang Y, Sun N X and Brown G J 2015 IEEE Magn. Lett. 6 3500504
[29]
Lee S, Grudichak S, Sklenar J, Tsai C C, Jang M, Yang Q H, Zhang H W and Ketterson J B 2016 J. Appl. Phys. 120 033905
[30]
Kajiwara Y, Harii K, Takahashi S, Ohe J, Uchida K, Mizuguchi M, Umezawa H, Kawai H, Ando K, Takanashi K, Maekawa S and Saitoh E 2010 Nature 464 262
[31]
Nakayama H, Althammer M, Chen Y T, Uchida K, Kajiwara Y, Kikuchi D, Ohtani T, Geprags S, Opel M, Takahashi S, Gross R, Bauer G E W, Goennenwein S T B and Saitoh E 2013 Phys. Rev. Lett. 110 206601
[32]
Uchida K, Xiao J, Adachi H, Ohe J, Takahashi S, Ieda J, Ota T, Kajiwara Y, Umezawa H, Kawai H, Bauer G E W, Maekawa S and Saitoh E 2010 Nat. Mater. 9 894
[33]
Padron-Hernandez E, Azevedo A and Rezende S M 2011 Phys. Rev. Lett. 107 197203
[34]
Wang P, Zhou L F, Jiang S W, Luan Z Z, Shu D J, Ding H F and Wu D 2018 Phys. Rev. Lett. 120 047201
[35]
Liu C P, Chen J L, Liu T, Heimbach F, Yu H M, Xiao Y, Hu J F, Liu M C, Chang H C, Stueckler T, Tu S, Zhang Y G, Zhang Y, Gao P, Liao Z M, Yu D P, Xia K, Lei N, Zhao W S and Wu M Z 2018 Nat. Commun. 9 738
[36]
Damon R W and van de Vaart H 1965 J. Appl. Phys. 36 3453
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.