Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(10): 107503    DOI: 10.1088/1674-1056/abad1d
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Giant anisotropy of magnetic damping and significant in-plane uniaxial magnetic anisotropy in amorphous Co40Fe40B20 films on GaAs(001)

Ji Wang(王佶)1, Hong-Qing Tu(涂宏庆)1,2, Jian Liang(梁健)3, Ya Zhai(翟亚)3, Ruo-Bai Liu(刘若柏)1, Yuan Yuan(袁源)1, Lin-Ao Huang(黄林傲)1, Tian-Yu Liu(刘天宇)1, Bo Liu(刘波)4,†, Hao Meng(孟皓)4, Biao You(游彪)1,6, Wei Zhang(张维)1,6, Yong-Bing Xu(徐永兵)5, and Jun Du(杜军)1,6,
1 National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
2 Department of Mathematics and Physics, Nanjing Institute of Technology, Nanjing 211167, China
3 Department of Physics and Jiangsu Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing 211189, China
4 Key Laboratory of Spintronics Materials, Devices and Systems of Zhejiang Province, Hangzhou 311300, China
5 Department of Electronic Engineering, Nanjing University, Nanjing 210093, China
6 Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
Abstract  

Tuning magnetic damping constant in dedicated spintronic devices has important scientific and technological implications. Here we report on anisotropic damping in various compositional amorphous CoFeB films grown on GaAs(001) substrates. Measured by a vector network analyzer-ferromagnetic resonance (VNA-FMR) equipment, a giant magnetic damping anisotropy of 385%, i.e., the damping constant increases by about four times, is observed in a 10-nm-thick Co40Fe40B20 film when its magnetization rotates from easy axis to hard axis, accompanied by a large and pure in-plane uniaxial magnetic anisotropy (UMA) with its anisotropic field of about 450 Oe. The distinct damping anisotropy is mainly resulted from anisotropic two-magnon-scattering induced by the interface between the ferromagnetic layer and the substrate, which also generates a significant UMA in the film plane.

Keywords:  magnetic damping      uniaxial magnetic anisotropy      ferromagnetic resonance      two-magnon scattering  
Received:  05 July 2020      Revised:  31 July 2020      Accepted manuscript online:  07 August 2020
PACS:  75.78.-n (Magnetization dynamics)  
  75.30.Gw (Magnetic anisotropy)  
  76.50.+g (Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance)  
Corresponding Authors:  Corresponding author. E-mail: liubo@hikstor.com Corresponding author. E-mail: jdu@nju.edu.cn   
About author: 
†Corresponding author. E-mail: liubo@hikstor.com
‡Corresponding author. E-mail: jdu@nju.edu.cn
* Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0300803), the National Natural Science Foundation of China (Grant Nos. 51971109, 51771053, and 51471085), and Scientific Research Foundation of Nanjing Institute of Technology (Grant Nos. ZKJ201708 and CKJB201708).

Cite this article: 

Ji Wang(王佶), Hong-Qing Tu(涂宏庆), Jian Liang(梁健), Ya Zhai(翟亚), Ruo-Bai Liu(刘若柏), Yuan Yuan(袁源), Lin-Ao Huang(黄林傲), Tian-Yu Liu(刘天宇), Bo Liu(刘波)†, Hao Meng(孟皓), Biao You(游彪), Wei Zhang(张维), Yong-Bing Xu(徐永兵), and Jun Du(杜军)‡ Giant anisotropy of magnetic damping and significant in-plane uniaxial magnetic anisotropy in amorphous Co40Fe40B20 films on GaAs(001) 2020 Chin. Phys. B 29 107503

Fig. 1.  

XRD patterns for the Co40Fe40B20 film samples and a pure GaAs(001) substrate.

Fig. 2.  

The MH loops measured along [110] (a) and $ [1\bar{1}0] $ (b) crystallographic orientations of the GaAs(001) substrate and the azimuthal dependence of remanence ratio (c) for samples S1 and S2.

Fig. 3.  

(a) The measurement configuration of VNA-FMR. (b) Typical VNA-FMR spectra for several selected frequencies at φH = 0°. (c) Typical VNA-FMR spectra at various azimuthal angles recorded at f = 10 GHz. (d) The experimental (square dots) and fitted (red line) in-plane azimuthal dependence of Hr at f = 10 GHz.

Fig. 4.  

(a) The Hr dependences of frequency at φH = 0°, 30°, 60°, 75°, 90°, (b) azimuthal dependence of ΔH at f = 10 GHz, (c) frequency dependences of ΔH at φH = 0°, 30°, 60°, 75°, 90°, and (d) azimuthal dependence of αeff for sample S1. The experimental results are shown as dots and the fitted results are shown as lines except for (b), in which the line is only guide to eyes.

Sample 30° 60° 90° η
Co20Fe60B20 (10 nm) 0.0088±0.0004 0.0089±0.0004 0.0173±0.0009 0.0343±0.0009 290%
Co20Fe60B20 (20 nm) 0.0086±0.0003 0.0087±0.0005 0.0121±0.0005 0.0162±0.0007 88%
Co40Fe40B20 (10 nm) 0.0099±0.0005 0.0100±0.0005 0.0208±0.0009 0.0480±0.0009 385%
Co40Fe40B20 (20 nm) 0.0087±0.0003 0.0089±0.0003 0.0142±0.0003 0.0190±0.0007 118%
Co56Fe24B20 (10 nm) 0.0116±0.0003 0.0124±0.0005 0.0192±0.0009 0.0242±0.0009 109%
Co56Fe24B20 (20 nm) 0.0103±0.0005 0.0104±0.0005 0.0141±0.0005 0.0151±0.0005 47%
Table 1.  

Magnetic damping constants at various azimuthal angles and the corresponding values of η in the CoFeB films with different compositions and thicknesses. The data for the Co56Fe24B20 (10 nm) and Co56Fe24B20 (20 nm) films are taken from Ref. [24].

[1]
Hals K M D, Flensberg K, Rudner M S 2015 Phys. Rev. B 92 094403 DOI: 10.1103/PhysRevB.92.094403
[2]
Žutić I, Fabian J, Sarma S D 2004 Rev. Mod. Phys. 76 323 DOI: 10.1103/RevModPhys.76.323
[3]
Li S F, Cheng C Y, Meng K K, Chen C L 2019 Chin. Phys. B 28 097502 DOI: 10.1088/1674-1056/ab38ad
[4]
Ma T Y, Luo Z, Li Z W, Qiao L, Wang T, Li F S 2019 Chin. Phys. B 28 057505 DOI: 10.1088/1674-1056/28/5/057505
[5]
Benakli M, Torabi A F, Mallary M L, Zhou H, Bertram H N 2001 IEEE Trans. Magn. 37 1564 DOI: 10.1109/20.950901
[6]
Li X, Zhang Z Z, Jin Q Y, Liu Y W 2009 New J. Phys. 11 023027 DOI: 10.1088/1367-2630/11/2/023027
[7]
Costa J D, Serrano-Guisan S, Lacoste B, Jenkins A S, Böhnert T, Tarequzzaman M, Borme J, Deepak F L, Paz E, Ventura J, Ferreira R, Freitas P P 2017 Sci. Rep. 7 7237 DOI: 10.1038/s41598-017-07762-z
[8]
Liu X Y, Zhang W Z, Carter M J, Xiao G 2011 J. Appl. Phys. 110 033910 DOI: 10.1063/1.3615961
[9]
Schoen M A W, Thonig D, Schneider M L, Silva T J, Nembach H T, Eriksson O, Karis O, Shaw J M 2016 Nat. Phys. 12 839 DOI: 10.1038/nphys3770
[10]
Azzawi S, Ganguly A, Tokaç M, Rowan-Robinson R M, Sinha J, Hindmarch A T, Barman A, Atkinson D 2016 Phys. Rev. B 93 054402 DOI: 10.1103/PhysRevB.93.054402
[11]
Urban R, Woltersdorf G, Heinrich B 2001 Phys. Rev. Lett. 87 217204 DOI: 10.1103/PhysRevLett.87.217204
[12]
Luo C, Feng Z, Fu Y, Zhang W, Wong P K J, Kou Z X, Zhai Y, Ding H F, Farle M, Du J, Zhai H R 2014 Phys. Rev. B 89 184412 DOI: 10.1103/PhysRevB.89.184412
[13]
Ando K, Takahashi S, Harii K, Sasage K, Ieda J, Maekawa S, Saitoh E 2008 Phys. Rev. Lett. 101 036601 DOI: 10.1103/PhysRevLett.101.036601
[14]
Liu L Q, Moriyama T, Ralph D C, Buhrman R A 2011 Phys. Rev. Lett. 106 036601 DOI: 10.1103/PhysRevLett.106.036601
[15]
Chen L, Mankovsky S, Wimmer S, Schoen M A W, Körner H S, Kronseder M, Schuh D, Bougeard D, Ebert H, Weiss D, Back C H 2018 Nat. Phys. 14 490 DOI: 10.1038/s41567-018-0053-8
[16]
Li Y, Zeng F L, Zhang S S L, Shin H, Saglam H, Karakas V, Ozatay O, Pearson J E, Heinonen O G, Wu Y Z, Hoffmann A, Zhang W 2019 Phys. Rev. Lett. 122 117203 DOI: 10.1103/PhysRevLett.122.117203
[17]
Yang L, Yan Y, Chen Y Q, Chen Y Y, Liu B, Chen Z D, Lu X Y, Wu J, He L, Ruan X Z, Liu B, Xu Y B 2020 J. Phys. D: Appl. Phys. 53 115004 DOI: 10.1088/1361-6463/ab61cd
[18]
Chen Z D, Kong W W, Mi K, Chen G L, Zhang P, Fan X L, Gao C X, Xue D S 2018 Appl. Phys. Lett. 112 122406 DOI: 10.1063/1.5022087
[19]
Kasatani Y, Yamada S, Itoh H, Miyao M, Hamaya K, Nozaki Y 2014 Appl. Phys. Express 7 123001 DOI: 10.7567/APEX.7.123001
[20]
Yilgin R, Sakuraba Y, Oogane M, Mizukami S, Ando Y, Miyazaki T 2007 Jpn. J. Appl. Phys. 46 L205 DOI: 10.1143/JJAP.46.L205
[21]
Li Y, Li Y, Liu Q, Yuan Z, Zhan Q F, He W, Liu H L, Xia K, Yu W, Zhang X Q, Cheng Z H 2019 New J. Phys. 21 123001 DOI: 10.1088/1367-2630/ab5a06
[22]
Hindmarch A T, Kinane C J, MacKenzie M, Chapman J N, Henini M, Taylor D, Arena D A, Dvorak J, Hickey B J, Marrows C H 2008 Phys. Rev. Lett. 100 117201 DOI: 10.1103/PhysRevLett.100.117201
[23]
Hindmarch A T, Rushforth A W, Campion R P, Marrows C H, Gallagher B L 2011 Phys. Rev. B 83 212404 DOI: 10.1103/PhysRevB.83.212404
[24]
Tu H Q, Wang J, Huang Z C, Zhai Y, Zhu Z D, Zhang Z Z, Qu J T, Zheng R K, Yuan Y, Liu R B, Zhang W, You B, Du J 2020 J. Phys: Condens. Matter 32 335804 DOI: 10.1088/1361-648X/ab8984
[25]
Srivastava R S 1977 J. Appl. Phys. 48 1355 DOI: 10.1063/1.323730
[26]
Ohodnicki P R, McHenry M E, Laughlin D E 2007 J. Appl. Phys. 101 09N118 DOI: 10.1063/1.2711389
[27]
Tu H Q, You B, Zhang Y Q, Gao Y, Xu Y B, Du J 2015 IEEE Trans. Magn. 51 2005104 DOI: 10.1109/TMAG.2015.2441719
[28]
Tu H Q, Liu B, Huang D W, Ruan X Z, You B, Huang Z C, Zhai Y, Gao Y, Wang J, Wei L J, Yuan Y, Xu Y B, Du J 2017 Sci. Rep. 7 43971 DOI: 10.1038/srep43971
[29]
Qiao S, Nie S H, Zhao J H, Huo Y, Wu Y Z, Zhang X H 2013 Appl. Phys. Lett. 103 152402 DOI: 10.1063/1.4824654
[30]
Smit J, Beljers H G 1955 Philips Res. Rep. 10 113
[31]
Arias R, Mills D L 1999 Phys. Rev. B 60 7395 DOI: 10.1103/PhysRevB.60.7395
[32]
Néel L 1954 J. Phys. Radium 15 225 DOI: 10.1051/jphysrad:01954001504022500
[33]
Taniguchi S 1955 Sci. Rep. Res. Inst. Tohoku Univ. Ser. A 7 269
[1] Enhancement of spin-orbit torque efficiency by tailoring interfacial spin-orbit coupling in Pt-based magnetic multilayers
Wenqiang Wang(王文强), Gengkuan Zhu(朱耿宽), Kaiyuan Zhou(周恺元), Xiang Zhan(战翔), Zui Tao(陶醉), Qingwei Fu(付清为), Like Liang(梁力克), Zishuang Li(李子爽), Lina Chen(陈丽娜), Chunjie Yan(晏春杰), Haotian Li(李浩天), Tiejun Zhou(周铁军), and Ronghua Liu(刘荣华). Chin. Phys. B, 2022, 31(9): 097504.
[2] Voltage control magnetism and ferromagnetic resonance in an Fe19Ni81/PMN-PT heterostructure by strain
Jun Ren(任军), Junming Li(李军明), Sheng Zhang(张胜), Jun Li(李骏), Wenxia Su(苏文霞), Dunhui Wang(王敦辉), Qingqi Cao(曹庆琪), and Youwei Du(都有为). Chin. Phys. B, 2022, 31(7): 077502.
[3] Enhancement of magnetic and dielectric properties of low temperature sintered NiCuZn ferrite by Bi2O3-CuO additives
Jie Li(李颉), Bing Lu(卢冰), Ying Zhang(张颖), Jian Wu(武剑), Yan Yang(杨燕), Xue-Ning Han(韩雪宁), Dan-Dan Wen(文丹丹), Zheng Liang(梁峥), and Huai-Wu Zhang(张怀武). Chin. Phys. B, 2022, 31(4): 047502.
[4] Gilbert damping in the layered antiferromagnet CrCl3
Xinlin Mi(米锌林), Ledong Wang(王乐栋), Qi Zhang(张琪), Yitong Sun(孙艺彤), Yufeng Tian(田玉峰), Shishen Yan(颜世申), and Lihui Bai(柏利慧). Chin. Phys. B, 2022, 31(2): 027505.
[5] Terahertz magnetic resonance in MnCr2O4 under high magnetic field
Peng Zhang(张朋), Kaibo He(贺凯博), Zheng Wang(王铮), Shile Zhang(张仕乐), Jianming Dai(戴建明), and Fuhai Su(苏付海). Chin. Phys. B, 2022, 31(10): 107502.
[6] Theoretical investigation of ferromagnetic resonance in a ferromagnetic thin film with external stress anisotropy
Jieyu Zhou(周婕妤), Jianhong Rong(荣建红), Huan Wang(王焕), Guohong Yun(云国宏), Yanan Wang(王娅男), and Shufei Zhang(张舒飞). Chin. Phys. B, 2022, 31(1): 017601.
[7] Magnetic dynamics of two-dimensional itinerant ferromagnet Fe3GeTe2
Lijun Ni(倪丽君), Zhendong Chen(陈振东), Wei Li(李威), Xianyang Lu(陆显扬), Yu Yan(严羽), Longlong Zhang(张龙龙), Chunjie Yan(晏春杰), Yang Chen(陈阳), Yaoyu Gu(顾耀玉), Yao Li(黎遥), Rong Zhang(张荣), Ya Zhai(翟亚), Ronghua Liu(刘荣华), Yi Yang(杨燚), and Yongbing Xu(徐永兵). Chin. Phys. B, 2021, 30(9): 097501.
[8] Enhanced spin-orbit torque efficiency in Pt100-xNix alloy based magnetic bilayer
Congli He(何聪丽), Qingqiang Chen(陈庆强), Shipeng Shen(申世鹏), Jinwu Wei(魏晋武), Hongjun Xu(许洪军), Yunchi Zhao(赵云驰), Guoqiang Yu(于国强), and Shouguo Wang(王守国). Chin. Phys. B, 2021, 30(3): 037503.
[9] Effect of interface magnetization depinning on the frequency shift of ferromagnetic and spin wave resonance in YIG/GGG films
Fanqing Lin(林凡庆), Shouheng Zhang(张守珩), Guoxia Zhao(赵国霞), Hongfei Li(李洪飞), Weihua Zong(宗卫华), Shandong Li(李山东). Chin. Phys. B, 2020, 29(6): 067601.
[10] Improvement of high-frequency properties of Co2FeSi Heusler films by ultrathin Ru underlayer
Cuiling Wang(王翠玲), Shouheng Zhang(张守珩), Shandong Li(李山东), Honglei Du(杜洪磊), Guoxia Zhao(赵国霞), Derang Cao(曹德让). Chin. Phys. B, 2020, 29(4): 046202.
[11] The unique magnetic damping enhancement in epitaxial Co2Fe1-xMnxAl films
Shu-Fa Li(李树发), Chu-Yuan Cheng(程樗元), Kang-Kang Meng(孟康康), Chun-Lei Chen(陈春雷). Chin. Phys. B, 2019, 28(9): 097502.
[12] Thickness-dependent magnetic anisotropy in obliquely deposited Fe(001)/Pd thin film bilayers probed by VNA-FMR
Qeemat Gul, Wei He(何为), Yan Li(李岩), Rui Sun(孙瑞), Na Li(李娜), Xu Yang(杨旭), Yang Li(李阳), Zi-Zhao Gong(弓子召), Zong-Kai Xie(谢宗凯), Xiang-Qun Zhang(张向群), Zhao-Hua Cheng(成昭华). Chin. Phys. B, 2019, 28(7): 077502.
[13] Influence of additives on the magnetic damping constant of CoIr soft magnetic thin films with negative magnetocrystalline anisotropy
Tianyong Ma(马天勇), Zhi Luo(罗智), Zhiwei Li(李志伟), Liang Qiao(乔亮), Tao Wang(王涛), Fashen Li(李发伸). Chin. Phys. B, 2019, 28(5): 057505.
[14] Voltage control of ferromagnetic resonance and spin waves
Xinger Zhao(赵星儿), Zhongqiang Hu(胡忠强), Qu Yang(杨曲), Bin Peng(彭斌), Ziyao Zhou(周子尧), Ming Liu(刘明). Chin. Phys. B, 2018, 27(9): 097505.
[15] Large tunable FMR frequency shift by magnetoelectric coupling in oblique-sputtered Fe52.5Co22.5B25.0/PZN-PT multiferroic heterostructure
Zhi-Peng Shi(时志鹏), Xiao-Min Liu(刘晓敏), Shan-Dong Li(李山东). Chin. Phys. B, 2017, 26(9): 097601.
No Suggested Reading articles found!