CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Giant anisotropy of magnetic damping and significant in-plane uniaxial magnetic anisotropy in amorphous Co40Fe40B20 films on GaAs(001) |
Ji Wang(王佶)1, Hong-Qing Tu(涂宏庆)1,2, Jian Liang(梁健)3, Ya Zhai(翟亚)3, Ruo-Bai Liu(刘若柏)1, Yuan Yuan(袁源)1, Lin-Ao Huang(黄林傲)1, Tian-Yu Liu(刘天宇)1, Bo Liu(刘波)4,†, Hao Meng(孟皓)4, Biao You(游彪)1,6, Wei Zhang(张维)1,6, Yong-Bing Xu(徐永兵)5, and Jun Du(杜军)1,6,‡ |
1 National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China 2 Department of Mathematics and Physics, Nanjing Institute of Technology, Nanjing 211167, China 3 Department of Physics and Jiangsu Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing 211189, China 4 Key Laboratory of Spintronics Materials, Devices and Systems of Zhejiang Province, Hangzhou 311300, China 5 Department of Electronic Engineering, Nanjing University, Nanjing 210093, China 6 Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China |
|
|
Abstract Tuning magnetic damping constant in dedicated spintronic devices has important scientific and technological implications. Here we report on anisotropic damping in various compositional amorphous CoFeB films grown on GaAs(001) substrates. Measured by a vector network analyzer-ferromagnetic resonance (VNA-FMR) equipment, a giant magnetic damping anisotropy of 385%, i.e., the damping constant increases by about four times, is observed in a 10-nm-thick Co40Fe40B20 film when its magnetization rotates from easy axis to hard axis, accompanied by a large and pure in-plane uniaxial magnetic anisotropy (UMA) with its anisotropic field of about 450 Oe. The distinct damping anisotropy is mainly resulted from anisotropic two-magnon-scattering induced by the interface between the ferromagnetic layer and the substrate, which also generates a significant UMA in the film plane.
|
Received: 05 July 2020
Revised: 31 July 2020
Accepted manuscript online: 07 August 2020
|
PACS:
|
75.78.-n
|
(Magnetization dynamics)
|
|
75.30.Gw
|
(Magnetic anisotropy)
|
|
76.50.+g
|
(Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance)
|
|
Corresponding Authors:
†Corresponding author. E-mail: liubo@hikstor.com ‡Corresponding author. E-mail: jdu@nju.edu.cn
|
About author: †Corresponding author. E-mail: liubo@hikstor.com ‡Corresponding author. E-mail: jdu@nju.edu.cn * Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0300803), the National Natural Science Foundation of China (Grant Nos. 51971109, 51771053, and 51471085), and Scientific Research Foundation of Nanjing Institute of Technology (Grant Nos. ZKJ201708 and CKJB201708). |
Cite this article:
Ji Wang(王佶), Hong-Qing Tu(涂宏庆), Jian Liang(梁健), Ya Zhai(翟亚), Ruo-Bai Liu(刘若柏), Yuan Yuan(袁源), Lin-Ao Huang(黄林傲), Tian-Yu Liu(刘天宇), Bo Liu(刘波)†, Hao Meng(孟皓), Biao You(游彪), Wei Zhang(张维), Yong-Bing Xu(徐永兵), and Jun Du(杜军)‡ Giant anisotropy of magnetic damping and significant in-plane uniaxial magnetic anisotropy in amorphous Co40Fe40B20 films on GaAs(001) 2020 Chin. Phys. B 29 107503
|
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
Benakli M, Torabi A F, Mallary M L, Zhou H, Bertram H N 2001 IEEE Trans. Magn. 37 1564 DOI: 10.1109/20.950901
|
[6] |
|
[7] |
Costa J D, Serrano-Guisan S, Lacoste B, Jenkins A S, Böhnert T, Tarequzzaman M, Borme J, Deepak F L, Paz E, Ventura J, Ferreira R, Freitas P P 2017 Sci. Rep. 7 7237 DOI: 10.1038/s41598-017-07762-z
|
[8] |
Liu X Y, Zhang W Z, Carter M J, Xiao G 2011 J. Appl. Phys. 110 033910 DOI: 10.1063/1.3615961
|
[9] |
Schoen M A W, Thonig D, Schneider M L, Silva T J, Nembach H T, Eriksson O, Karis O, Shaw J M 2016 Nat. Phys. 12 839 DOI: 10.1038/nphys3770
|
[10] |
Azzawi S, Ganguly A, Tokaç M, Rowan-Robinson R M, Sinha J, Hindmarch A T, Barman A, Atkinson D 2016 Phys. Rev. B 93 054402 DOI: 10.1103/PhysRevB.93.054402
|
[11] |
|
[12] |
Luo C, Feng Z, Fu Y, Zhang W, Wong P K J, Kou Z X, Zhai Y, Ding H F, Farle M, Du J, Zhai H R 2014 Phys. Rev. B 89 184412 DOI: 10.1103/PhysRevB.89.184412
|
[13] |
|
[14] |
|
[15] |
Chen L, Mankovsky S, Wimmer S, Schoen M A W, Körner H S, Kronseder M, Schuh D, Bougeard D, Ebert H, Weiss D, Back C H 2018 Nat. Phys. 14 490 DOI: 10.1038/s41567-018-0053-8
|
[16] |
Li Y, Zeng F L, Zhang S S L, Shin H, Saglam H, Karakas V, Ozatay O, Pearson J E, Heinonen O G, Wu Y Z, Hoffmann A, Zhang W 2019 Phys. Rev. Lett. 122 117203 DOI: 10.1103/PhysRevLett.122.117203
|
[17] |
Yang L, Yan Y, Chen Y Q, Chen Y Y, Liu B, Chen Z D, Lu X Y, Wu J, He L, Ruan X Z, Liu B, Xu Y B 2020 J. Phys. D: Appl. Phys. 53 115004 DOI: 10.1088/1361-6463/ab61cd
|
[18] |
Chen Z D, Kong W W, Mi K, Chen G L, Zhang P, Fan X L, Gao C X, Xue D S 2018 Appl. Phys. Lett. 112 122406 DOI: 10.1063/1.5022087
|
[19] |
Kasatani Y, Yamada S, Itoh H, Miyao M, Hamaya K, Nozaki Y 2014 Appl. Phys. Express 7 123001 DOI: 10.7567/APEX.7.123001
|
[20] |
Yilgin R, Sakuraba Y, Oogane M, Mizukami S, Ando Y, Miyazaki T 2007 Jpn. J. Appl. Phys. 46 L205 DOI: 10.1143/JJAP.46.L205
|
[21] |
Li Y, Li Y, Liu Q, Yuan Z, Zhan Q F, He W, Liu H L, Xia K, Yu W, Zhang X Q, Cheng Z H 2019 New J. Phys. 21 123001 DOI: 10.1088/1367-2630/ab5a06
|
[22] |
Hindmarch A T, Kinane C J, MacKenzie M, Chapman J N, Henini M, Taylor D, Arena D A, Dvorak J, Hickey B J, Marrows C H 2008 Phys. Rev. Lett. 100 117201 DOI: 10.1103/PhysRevLett.100.117201
|
[23] |
|
[24] |
Tu H Q, Wang J, Huang Z C, Zhai Y, Zhu Z D, Zhang Z Z, Qu J T, Zheng R K, Yuan Y, Liu R B, Zhang W, You B, Du J 2020 J. Phys: Condens. Matter 32 335804 DOI: 10.1088/1361-648X/ab8984
|
[25] |
|
[26] |
Ohodnicki P R, McHenry M E, Laughlin D E 2007 J. Appl. Phys. 101 09N118 DOI: 10.1063/1.2711389
|
[27] |
|
[28] |
Tu H Q, Liu B, Huang D W, Ruan X Z, You B, Huang Z C, Zhai Y, Gao Y, Wang J, Wei L J, Yuan Y, Xu Y B, Du J 2017 Sci. Rep. 7 43971 DOI: 10.1038/srep43971
|
[29] |
Qiao S, Nie S H, Zhao J H, Huo Y, Wu Y Z, Zhang X H 2013 Appl. Phys. Lett. 103 152402 DOI: 10.1063/1.4824654
|
[30] |
Smit J, Beljers H G 1955 Philips Res. Rep. 10 113
|
[31] |
|
[32] |
|
[33] |
Taniguchi S 1955 Sci. Rep. Res. Inst. Tohoku Univ. Ser. A 7 269
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|