Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(4): 047502    DOI: 10.1088/1674-1056/ac3399
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Enhancement of magnetic and dielectric properties of low temperature sintered NiCuZn ferrite by Bi2O3-CuO additives

Jie Li(李颉)1,†, Bing Lu(卢冰)1, Ying Zhang(张颖)1, Jian Wu(武剑)1, Yan Yang(杨燕)1,2, Xue-Ning Han(韩雪宁)1, Dan-Dan Wen(文丹丹)3, Zheng Liang(梁峥)1, and Huai-Wu Zhang(张怀武)1
1 State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China;
2 College of Communication Engineering, Chengdu University of Information Technology, Chengdu 610225, China;
3 Chongqing Engineering Research Center of Intelligent Sensing Technology and Microsystem, Chongqing University of Post and Telecommunications, Chongqing 400065, China
Abstract  With a series of 1.0 wt%Bi$_{2}$O$_{3}$-$x$ wt% CuO ($x =0.0$, 0.2, 0.4, 0.6, and 0.8) serving as sintering additives, Ni$_{0.23}$Cu$_{0.32}$Zn$_{0.45}$Fe$_{2}$O$_{4}$ ferrites are successfully synthesized at a low temperature (900 $^\circ$C) by using the solid state reaction method. The effects of the additives on the phase formation, magnetic and dielectric properties as well as the structural and gyromagnetic properties are investigated. The x-ray diffraction (XRD) results indicate that the added Bi$_{2}$O$_{3}$-CuO can lower the synthesis temperature significantly without the appearing of the second phase. The scanning electron microscope (SEM) images confirm that Bi$_{2}$O$_{3}$ is an important factor that determines the sintering behaviors, while CuO affects the grain size and densification. With CuO content $x=0.4$ or 0.6, the sample shows high saturation magnetization, low coercivity, high real part of magnetic permeability, dielectric permittivity, and small ferromagnetic resonance linewidth ($\Delta H$). The NiCuZn ferrites are a promising new generation of high-performance microwave devices, such as phase shifters and isolators.
Keywords:  NiCuZn ferrite      Bi2O3-CuO additive      magnetic properties      dielectric properties      ferromagnetic resonance (FMR) linewidth  
Received:  18 September 2021      Revised:  20 October 2021      Accepted manuscript online:  27 October 2021
PACS:  75.50.Gg (Ferrimagnetics)  
  75.47.Lx (Magnetic oxides)  
  75.60.Ej (Magnetization curves, hysteresis, Barkhausen and related effects)  
  75.75.Lf (Electronic structure of magnetic nanoparticles)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFE0115500), the National Natural Science Foundation of China (Grant Nos. 52003256 and 51902037), and the Natural Science Foundation of Shanxi Province, China (Grant No. 201901D211259).
Corresponding Authors:  Jie Li     E-mail:  lijie@uestc.edu.cn

Cite this article: 

Jie Li(李颉), Bing Lu(卢冰), Ying Zhang(张颖), Jian Wu(武剑), Yan Yang(杨燕), Xue-Ning Han(韩雪宁), Dan-Dan Wen(文丹丹), Zheng Liang(梁峥), and Huai-Wu Zhang(张怀武) Enhancement of magnetic and dielectric properties of low temperature sintered NiCuZn ferrite by Bi2O3-CuO additives 2022 Chin. Phys. B 31 047502

[1] Yang Y, Li J, Zhang H W, Wang G, Gan G W and Rao Y H 2020 J. Mater. Sci.-Mater. El. 31 12325
[2] Frajer G, Isnard O, Chazal H and Delette G 2019 J. Magn. Magn. Mater. 473 92
[3] Yan S Q, Liu S, He J, Luo H, He L H, Li Y H, Huang S X and Deng L W 2018 J. Magn. Magn. Mater. 452 349
[4] Wang A P, Su H, Tang X L, Li Y X, Xu Z Q and Jing Y L 2018 J. Mater. Sci.-Mater. El. 29 14605
[5] Wang Y, Jing Y L, Wang P, Li Y X, Lu Q H and Tang X L 2020 J. Magn. Magn. Mater. 514 167182
[6] Wang X Y, Zhang D N, Wang G, Jin L C, Li J, Liao Y L, Zhang H W and Wang S Y 2020 Ceram. Intl. 46 10652
[7] Yang Y, Zhang H W, Li J, Xu F, Gan G W and Wen D D 2018 Ceram. Intl. 44 10545
[8] Luo Q, Su H, Tang X L, Xu Z Q, Li Y X and Jing Y L 2018 Ceram. Intl. 44 16005
[9] Zhu H, Shen W, Zhu H, Jin Y and Zhou H 2014 Ceram. Intl. 40 10985
[10] Kabbur M, Waghmare S D, Ghodake U R and Suryavanshi S S 2018 AIP Conference Proceedings 1942 130002
[11] Hsiang H I, Yang S M and Chen C C 2020 Int. J. Appl. Glass Sci. 11 774
[12] Han J M, Sun L, Cao E S, Hao W T, Zhang Y J and Ju L 2021 Chin. Phys. B 30 096102
[13] Meng F B, Yang M, Zhao L, Zhang Y J, Shang X N, Jin P and Zhang W 2017 Ceram. Intl. 43 15959
[14] Zhang S N, Jia L J, Zhang H W, Li J, Zhou T C and Liu B Y 2014 J. Appl. Phys. 115 17A524
[15] Zheng Y H, Jia L J, Xu F, Wang G, Shi X L and Zhang H W 2019 Ceram. Intl. 45 22163
[16] Mondal R A, Murty B S and Murthy V R K 2014 J. Alloys Compd. 595 206
[17] Xie F, Jia L J, Zhao Y P, Li J, Zhou T C, Liao Y L and Zhang H W 2017 J. Alloys Compd. 695 3233
[18] Yang W, Kan X C, Liu X S, Wang Z Z, Chen Z H, Wang Z, Zhu R W and Shezad M 2019 Ceram. Intl. 45 23328
[19] Ribeiro U L, Nasar R S, Nasar M C and de Araujo J H 2018 Ceram. Intl. 44 723
[20] Zhao X, Fu Y, Wang J, Xu Y J, Tian J H and Yang R Z 2016 Electrochimica Acta 201 172
[21] Yan Z and Luo J H 2017 J. Alloys Compd. 695 1185
[22] Barba A, Clausell C, Nuno L and Jarque J C 2017 J. Eur. Ceram. Soc. 37 169
[23] Hsiang H I and Chueh J F 2015 Intl. J. Appl. Ceram. Technol. 12 1008
[24] Xie F, Liu H, Zhou S, Chen Y, Xu F, Bai M Y and Liu W G 2021 J. Alloys Compd. 862 158650
[25] Hcini F, Hcini S, Wederni M A, Alzahrani B, Al Robei H, Khirouni K, Zemni S and Bouazizi M L 2022 Physica B 624 413439
[26] Hcini S, Omri A, Boudard M, Bouazizi M L, Dhahri A and Touileb K 2018 J. Mater. Sci.-Mater. El. 29 6879
[27] Yang Y, Li J, Zhang H W, Rao Y H, Wang G and Gan G W 2020 J. Mater. Sci.-Mater. El. 31 2845
[1] Structural evolution-enabled BiFeO3 modulated by strontium doping with enhanced dielectric, optical and superparamagneticproperties by a modified sol-gel method
Sharon V S, Veena Gopalan E, and Malini K A. Chin. Phys. B, 2023, 32(3): 037504.
[2] Preparation of PSFO and LPSFO nanofibers by electrospinning and their electronic transport and magnetic properties
Ying Su(苏影), Dong-Yang Zhu(朱东阳), Ting-Ting Zhang(张亭亭), Yu-Rui Zhang(张玉瑞), Wen-Peng Han(韩文鹏), Jun Zhang(张俊), Seeram Ramakrishna, and Yun-Ze Long(龙云泽). Chin. Phys. B, 2022, 31(5): 057305.
[3] A review on 3d transition metal dilute magnetic REIn3 intermetallic compounds
Xin-Peng Guo(郭新鹏), Yong-Quan Guo(郭永权), Lin-Han Yin(殷林瀚), and Qiang He(何强). Chin. Phys. B, 2022, 31(3): 037501.
[4] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
[5] Experimental observation of interlayer perpendicular standing spin wave mode with low damping in skyrmion-hosting [Pt/Co/Ta]10 multilayer
Zhen-Dong Chen(陈振东), Mei-Yang Ma(马眉扬), Sen-Fu Zhang(张森富), Mang-Yuan Ma(马莽原), Zi-Zhao Pan(潘咨兆), Xi-Xiang Zhang(张西祥), Xue-Zhong Ruan(阮学忠), Yong-Bing Xu(徐永兵), and Fu-Sheng Ma(马付胜). Chin. Phys. B, 2022, 31(11): 117501.
[6] Stability of liquid crystal systems doped with γ-Fe2O3 nanoparticles
Xu Zhang(张旭), Ningning Liu(刘宁宁), Zongyuan Tang(唐宗元), Yingning Miao(缪应宁), Xiangshen Meng(孟祥申), Zhenghong He(何正红), Jian Li(李建), Minglei Cai(蔡明雷), Tongzhou Zhao(赵桐州), Changyong Yang(杨长勇), Hongyu Xing(邢红玉), and Wenjiang Ye(叶文江). Chin. Phys. B, 2021, 30(9): 096101.
[7] Structural, magnetic, and dielectric properties of Ni-Zn ferrite and Bi2O3 nanocomposites prepared by the sol-gel method
Jinmiao Han(韩晋苗), Li Sun(孙礼), Ensi Cao(曹恩思), Wentao Hao(郝文涛), Yongjia Zhang(张雍家), and Lin Ju(鞠林). Chin. Phys. B, 2021, 30(9): 096102.
[8] Microstructure and magnetocaloric properties in melt-spun and high-pressure hydrogenated La0.5Pr0.5Fe11.4Si1.6 ribbons
Qian Liu(刘倩), Min Tong(佟敏), Xin-Guo Zhao(赵新国), Nai-Kun Sun(孙乃坤), Xiao-Fei Xiao(肖小飞), Jie Guo(郭杰), Wei Liu(刘伟), and Zhi-Dong Zhang(张志东). Chin. Phys. B, 2021, 30(8): 087502.
[9] Structure and magnetic properties of RAlSi (R=light rare earth)
Tai Wang(王泰), Yongquan Guo(郭永权), and Cong Wang(王聪). Chin. Phys. B, 2021, 30(7): 075102.
[10] Effects of post-sinter annealing on microstructure and magnetic properties of Nd-Fe-B sintered magnets with Nd-Ga intergranular addition
Jin-Hao Zhu(朱金豪), Lei Jin(金磊), Zhe-Huan Jin(金哲欢), Guang-Fei Ding(丁广飞), Bo Zheng(郑波), Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2021, 30(6): 067503.
[11] Electronic and magnetic properties of single-layer and double-layer VX2 (X=Cl, Br) under biaxial stress
Xing Li(李兴), Yanfeng Ge(盖彦峰), Jun Li(李军), Wenhui Wan(万文辉), and Yong Liu(刘永). Chin. Phys. B, 2021, 30(10): 107305.
[12] Effect of external electric field on crystalline structure anddielectric properties of Bi1.5MgNb1.5O7 thin films
Zhongzhe Liu(刘钟喆), Libin Gao(高莉彬), Kexin Liang(梁可欣), Zhen Fang(方针), Hongwei Chen(陈宏伟), and Jihua Zhang(张继华). Chin. Phys. B, 2021, 30(10): 107703.
[13] Magnetic properties and promising cryogenic magneto-caloric performances of Gd20Ho20Tm20Cu20Ni20 amorphous ribbons
Yikun Zhang(张义坤), Bingbing Wu(吴兵兵), Dan Guo(郭丹), Jiang Wang(王江), and Zhongming Ren(任忠鸣). Chin. Phys. B, 2021, 30(1): 017501.
[14] Electronic structures, magnetic properties, and martensitic transformation in all-d-metal Heusler-like alloys Cd2MnTM(TM=Fe, Ni, Cu)
Yong Li(李勇), Peng Xu(徐鹏), Xiaoming Zhang(张小明), Guodong Liu(刘国栋), Enke Liu(刘恩克), Lingwei Li(李领伟). Chin. Phys. B, 2020, 29(8): 087101.
[15] Structural, electronic, and magnetic properties of quaternary Heusler CrZrCoZ compounds: A first-principles study
Xiao-Ping Wei(魏小平), Tie-Yi Cao(曹铁义), Xiao-Wei Sun(孙小伟), Qiang Gao(高强), Peifeng Gao(高配峰), Zhi-Lei Gao(高治磊), Xiao-Ma Tao(陶小马). Chin. Phys. B, 2020, 29(7): 077105.
No Suggested Reading articles found!