|
|
Light emission from multiple self-trapped excitons in one-dimensional Ag-based ternary halides |
Jiahao Xie(颉家豪)†, Zewei Li(李泽唯)†, Shengqiao Wang(王晟侨), and Lijun Zhang(张立军)‡ |
State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Automobile Materials of MOE, Key Laboratory of Material Simulation Methods & Software of MOE, School of Materials Science and Engineering, Jilin University, Changchun 130000, China |
|
|
Abstract Ternary metal halides based on Cu(I) and Ag(I) have attracted intensive attention in optoelectronic applications due to their excellent luminescent properties, low toxicity, and robust stability. While the self-trapped excitons (STEs) emission mechanisms of Cu(I) halides are well understood, the STEs in Ag(I) halides remain less thoroughly explored. This study explores the STE emission efficiency within the $A_{2}$Ag$X_{3}$ ($A = {\rm Rb}$, Cs; $X = {\rm Cl}$, Br, I) system by identifying three distinct STE states in each material and calculating their configuration coordinate diagrams. We find that the STE emission efficiency in this system is mainly determined by STE stability and influenced by self-trapping and quenching barriers. Moreover, we investigate the impact of structural compactness on emission efficiency and find that the excessive electron-phonon coupling in this system can be reduced by increasing the structural compactness. The atomic packing factor is identified as a low-cost and effective descriptor for predicting STE emission efficiency in both Cs$_{2}$Ag$X_{3}$ and Rb$_{2}$Ag$X_{3}$ systems. These findings can deepen our understanding of STE behavior in metal halide materials and offer valuable insights for the design of efficient STE luminescent materials. The datasets presented in this paper are openly available in Science Data Bank at https://doi.org/10.57760/sciencedb.12094.
|
Received: 17 August 2024
Revised: 07 September 2024
Accepted manuscript online: 24 September 2024
|
PACS:
|
71.38.Ht
|
(Self-trapped or small polarons)
|
|
78.20.Bh
|
(Theory, models, and numerical simulation)
|
|
78.55.Hx
|
(Other solid inorganic materials)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62125402 and 62321166653). |
Corresponding Authors:
Lijun Zhang
E-mail: lijun_zhang@jlu.edu.cn
|
Cite this article:
Jiahao Xie(颉家豪), Zewei Li(李泽唯), Shengqiao Wang(王晟侨), and Lijun Zhang(张立军) Light emission from multiple self-trapped excitons in one-dimensional Ag-based ternary halides 2024 Chin. Phys. B 33 117102
|
[1] Ma Z, Ji X, Lin S, Chen X, Wu D, Li X, Zhang Y, Shan C, Shi Z and Fang X 2023 Adv. Mater. 35 2300731 [2] Banerjee D and Saparov B 2023 Chem. Mater. 35 3364 [3] Zhang Z, Zhao R, Teng S, Huang K, Zhang L, Wang D, Yang W, Xie R and Pradhan N 2020 Small 16 2004272 [4] Kumar P, Creason T D, Fattal H, Sharma M, Du M H and Saparov B 2021 Adv. Funct. Mater. 31 2104941 [5] Zhang M, Wang X, Yang B, Zhu J, Niu G, Wu H, Yin L, Du X, Niu M, Ge Y, Xie Q, Yan Y and Tang J 2021 Adv. Funct. Mater. 31 2007921 [6] Zhang Z, Guo X, Huang K, Sun X, Li X, Zeng H, Zhu X, Zhang Y and Xie R 2022 J. Lumin. 241 118500 [7] Jun T, Sim K, Iimura S, Sasase M, Kamioka H, Kim J and Hosono H 2018 Adv. Mater. 30 1804547 [8] Zhang Z X, Li C, Lu Y, Tong X W, Liang F X, Zhao X Y, Wu D, Xie C and Luo L B 2019 J. Phys. Chem. Lett. 10 5343 [9] Roccanova R, Yangui A, Seo G, Creason T D, Wu Y, Kim D Y, Du M H and Saparov B 2019 ACS Mater. Lett. 1 459 [10] Creason T D, Yangui A, Roccanova R, Strom A, Du M and Saparov B 2019 Adv. Opt. Mater. 1901338 [11] Ma Z, Shi Z, Qin C, Cui M, Yang D, Wang X, Wang L, Ji X, Chen X, Sun J, Wu D, Zhang Y, Li X J, Zhang L and Shan C 2020 ACS Nano 14 4475 [12] Wang L, Shi Z, Ma Z, Yang D, Zhang F, Ji X, Wang M, Chen X, Na G, Chen S, Wu D, Zhang Y, Li X, Zhang L and Shan C 2020 Nano Lett. 20 3568 [13] Ma Z, Shi Z, Yang D, Li Y, Zhang F, Wang L, Chen X, Wu D, Tian Y, Zhang Y, Zhang L, Li X and Shan C 2021 Adv. Mater. 33 2001367 [14] Wang Z, Wang L, Xie J, Yang Y, Song Y, Xiao G, Fu Y, Zhang L, Fang Y, Yang D and Dong Q 2024 Small 20 2309922 [15] Wu D, Luo Y, He P, An K, Lai J, Feng P, Zhou M, Liu Y, Tang X and Han G 2023 ACS Appl. Opt. Mater. 1 78 [16] Fan R, Qiao J, Xu J, Feng S and Liu G 2024 Opt. Lett. 49 3942 [17] Yang D, Wang F, Li S, Shi Z and Li S 2024 J. Phys. Chem. C 128 2223 [18] Yao M M, Zhang Q, Wang D, Chen R, Yin Y C, Xia J, Tang H, Xu W P and Yu S H 2022 Adv. Funct. Mater. 32 2202894 [19] Dai P, Xu Z M and Wang Y X 2011 Chin. Phys. Lett. 28 017804 [20] Fan R, Qiao J, Xu J, Feng S and Liu G 2023 J. Alloys Compd. 960 170858 [21] Wang S, Liu R, Li J, Meng C, Liu J, Chen J, Cheng P and Wu K 2024 Angew. Chem. Int. Ed. 63 e202403927 [22] He T, Zhou Y, Wang X, Yin J, Gutiérrez-Arzaluz L, Wang J X, Zhang Y, Bakr O M and Mohammed O F 2022 ACS Energy Lett. 7 2753 [23] Wen X, Buryi M, Babin V, John D, Kučerková R, Nikl M, Wang Q, Li Y, Li W, Yang F, OuYang X and Wu Y 2024 Laser Photonics Rev. 2400518 [24] Du M H 2020 ACS Energy Lett. 5 464 [25] Ma Z, Liu Z, Lu S, Wang L, Feng X, Yang D, Wang K, Xiao G, Zhang L, Redfern S A T and Zou B 2018 Nat. Commun. 9 4506 [26] Li Q, Chen Z, Yang B, Tan L, Xu B, Han J, Zhao Y, Tang J and Quan Z 2020 J. Am. Chem. Soc. 142 1786 [27] Dai S, Xing X, Hadjiev V G, Qin Z, Tong T, Yang G, Wang C, Hou L, Deng L, Wang Z, Feng G and Bao J 2023 Mater. Today Phys. 30 100926 [28] Zhang L, Li S, Sun H, Jiang Q, Wang Y, Fang Y, Shi Y, Duan D, Wang K, Jiang H, Sui L, Wu G, Yuan K and Zou B 2023 Angew. Chem. Int. Ed. 62 e202301573 [29] Feng Y, Chen Y, Wang L, Wang J, Chang D, Yuan Y, Wu M, Fu R, Zhang L, Wang Q, Wang K, Guo H and Wang L 2024 Chin. Phys. Lett. 41 063201 [30] Stoneham M 2001 Theories of Defects in Solids (Oxford, New York: Oxford University Press) [31] Di Bartolo B 1991 Advances in Nonradiative Processes in Solids (Vol. 249) (Boston, MA: Springer US) [32] Landsberg P T 1992 Recombination in Semiconductors (Cambridge: Cambridge University Press) [33] Jung Y K, Kim S, Kim Y C and Walsh A 2021 J. Phys. Chem. Lett. 12 8447 [34] Xing Z, Zhou Z, Zhong G, Chan C C S, Li Y, Zou X, Halpert J E, Su H and Wong K S 2022 Adv. Funct. Mater. 32 2207638 [35] Wang X, Meng W, Liao W, Wang J, Xiong R G and Yan Y 2019 J. Phys. Chem. Lett. 10 501 [36] Sun H Y, Xiong L and Jiang H 2023 Chem. Phys. Rev. 4 031302 [37] Perdew J P, Ernzerhof M and Burke K 1996 J. Chem. Phys. 105 9982 [38] Adamo C and Barone V 1999 J. Chem. Phys. 110 6158 [39] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [40] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 [41] Slater J C 1964 J. Chem. Phys. 41 3199 [42] Yang C, Wang S, Chen W, Zhang Y, Guo F, Zhou Y, Wang J and Han H 2023 Chem. Eur. J. 29 e202301677 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|