| INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Modulation of exchange bias in Py/IrMn films by surface acoustic waves |
| Jie Dong(董洁), Shuai Mi(米帅), Meihong Liu(刘美宏), Huiliang Wu(吴辉亮), Jinxuan Shi(石金暄), Huifang Qiao(乔慧芳), Qian Zhao(赵乾), Teng-Fei Zhang(张腾飞), Chenbo Zhao(赵晨博), Jianbo Wang(王建波), and Qingfang Liu(刘青芳)† |
| School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China |
|
|
|
|
Abstract We investigate the surface acoustic wave (SAW) modulation of the exchange bias field ($H_{\rm EB}$) in Py/IrMn films deposited on LiNbO$_{3}$ substrates. We measured the anisotropic magnetoresistance (AMR) of the multilayer film when continuous SAW or pulsed SAW were applied and obtained $H_{\rm EB}$. With continuous SAW, the $H_{\rm EB}$ decreases continuously with power. While in the case of pulsed SAW, the $H_{\rm EB}$ first decreases and then stabilizes. Compared to pulsed SAW, the thermal effects from the continuous SAW lead to the continuous decrease of $H_{\rm EB}$ at higher SAW power, which is verified by the measurement of $H_{\rm EB}$ at different temperatures and input currents. Furthermore, our results show that pulsed SAW can effectively avoid thermal effects. The decrease of $H_{\rm EB}$ at smaller power in both continuous and pulsed SAW is mainly due to the SAW-induced dynamic strain field, which leads to a small perturbation in the magnetic moment of the FM layer. Combined with the AMR values measured at different angles during the saturation field, we believe that the SAW-induced dynamic strain field causes a 15$^\circ$ angle between the magnetic moment and the easy axis. Our experiments provide a different approach to manipulating $H_{\rm EB}$, opening up a potential avenue for future manipulation of antiferromagnetic moments.
|
Received: 11 February 2025
Revised: 01 April 2025
Accepted manuscript online: 21 April 2025
|
|
PACS:
|
85.70.Ec
|
(Magnetostrictive, magnetoacoustic, and magnetostatic devices)
|
| |
77.80.bn
|
(Strain and interface effects)
|
| |
75.30.Gw
|
(Magnetic anisotropy)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174166 and 12304144), the Fund from Beijing National Laboratory for Condensed Matter Physics (Grant No. 2024BNLCMPKF013), and the Fundamental Research Funds for the Central Universities (Grant No. lzujbky-2024-22). |
Corresponding Authors:
Qingfang Liu
E-mail: liuqf@lzu.edu.cn
|
Cite this article:
Jie Dong(董洁), Shuai Mi(米帅), Meihong Liu(刘美宏), Huiliang Wu(吴辉亮), Jinxuan Shi(石金暄), Huifang Qiao(乔慧芳), Qian Zhao(赵乾), Teng-Fei Zhang(张腾飞), Chenbo Zhao(赵晨博), Jianbo Wang(王建波), and Qingfang Liu(刘青芳) Modulation of exchange bias in Py/IrMn films by surface acoustic waves 2025 Chin. Phys. B 34 088502
|
[1] Xu X, HuW, Jia Y, Huang Y, Shan X, Zhu G, Ren H, He Q, Guo Q and Yu G 2024 J. Phys. D: Appl. Phys. 57 225003 [2] Cai K, Jin T and Lew W S 2024 Natl. Sci. Rev. 11 nwad272 [3] Nogués J, Sort J, Langlais V, Skumryev V, Suriñach S, Muñoz J S and Baró M D 2005 Phys. Rep. 422 65 [4] Ehrmann T B A 2021 Coatings 11 122 [5] Blachowicz T, Ehrmann A and Wortmann M 2023 Nanomaterials- Basel 13 2418 [6] Li H, Pan S, Wang Z, Xiang B and Zhu W 2024 Chin. Phys. B 33 017504 [7] Zhang Z, Liu E, Zhang W, Wong P K J, Xu Z, Hu F, Li X, Tang J, Wee A T S and Xu F 2019 ACS Appl. Mater. Interfaces 11 8258 [8] Sheng P, Xie Y, Bai Y, Wang B, Zhang L, Wen X, Yang H, Chen X, Li X and Li R W 2019 Appl. Phys. Lett. 115 242403 [9] Rizwan S, Yu G Q, Zhang S, Zhao Y G and Han X F 2012 J. Appl. Phys. 112 064120 [10] Polisetty S, EchtenkampW, Jones K, He X, Sahoo S and Binek C 2010 Phys. Rev. B 82 134419 [11] Zhai K, Chai Y, Cong J, Shang D and Sun Y 2018 Phys. Rev. B 98 144405 [12] Holanda J, Saglam H, Karakas V, Zang Z, Li Y, Divan R, Liu Y, Ozatay O, Novosad V, Pearson J E and Hoffmann A 2020 Phys. Rev. Lett. 124 087204 [13] Deng Z, Wang X, Wang M, et al. 2023 Adv. Mater. 35 2209759 [14] Chen J Y, Thiyagarajah N, Xu H J and Coey J M D 2014 Appl. Phys. Lett. 104 152405 [15] Kumar R, Sarangi S N, Samal D and Hossain Z 2021 Phys. Rev. B 103 064421 [16] Nogués J, Sort J, Suriñach S, Muñoz J S, Baró M D, Bobo J F, Lüders U, Haanappel E, Fitzsimmons M R, Hoffmann A and Cai J W 2003 Appl. Phys. Lett. 82 3044 [17] Shiratsuchi Y, Wakatsu K, Nakamura T, Oikawa H, Maenou S, Narumi Y, Tazoe K, Mitsumata C, Kinoshita T, Nojiri H and Nakatani R 2012 Appl. Phys. Lett. 100 262413 [18] Vallobra P, Fache T, Xu Y, Zhang L, Malinowski G, Hehn M, Rojas- Sánchez J C, Fullerton E E and Mangin S 2017 Phys. Rev. B 96 144403 [19] Chatterjee J, Polley D, Pattabi A, Jang H, Salahuddin S and Bokor J 2022 Adv. Funct. Mater. 32 2107490 [20] Guo Z, Malinowski G, Vallobra P, Peng Y, Xu Y, Mangin S, Zhao W, Hehn M and Zhang B 2023 Chin. Phys. B 32 087507 [21] Peng S, Zhu D, Li W, Wu H, Grutter A J, Gilbert D A, Lu J, Xiong D, Cai W, Shafer P, Wang K L and Zhao W 2020 Nat. Electron. 3 757 [22] Lin P H, Yang B Y, Tsai M H, Chen P C, Huang K F, Lin H H and Lai C H 2019 Nat. Mater. 18 335 [23] Zhou Z P, Liu X H and Wang K Y 2020 Appl. Phys. Lett. 116 062403 [24] Saglam H, Rojas-Sanchez J C, Petit S, Hehn M, ZhangW, Pearson J E, Mangin S and Hoffmann A 2018 Phys. Rev. B 98 094407 [25] Zhao Q, Zhang T, He B, Li Z, Zhang S, Yu G, Wang J, Liu Q and Wei J 2024 Chin. Phys. B 33 058502 [26] Holanda J, Maior D S, Santos O A, Azevedo A and Rezende S M 2021 Appl. Phys. Lett. 118 022409 [27] Holanda J, Maior D S, Azevedo A and Rezende S M 2018 Nat. Phys. 14 500 [28] Davis S, Baruth A and Adenwalla S 2010 Appl. Phys. Lett. 97 232507 [29] Thevenard L, Camara I S, Majrab S, Bernard M, Rovillain P, Lemaître A, Gourdon C and Duquesne J Y 2016 Phys. Rev. B 93 134430 [30] Thevenard L, Camara I S, Prieur J Y, Rovillain P, Lemaître A, Gourdon C and Duquesne J Y 2016 Phys. Rev. B 93 140405 [31] Cao Y, Bian X N, Yan Z, Xi L, Lei N, Qiao L, Si M S, Cao J W, Yang D Z and Xue D S 2021 Appl. Phys. Lett. 119 012401 [32] Qiao H, Niu Y, Li X, Mi S, Liu X, Xue J, Wu S, Wang X, Liu Q and Wang J 2022 J. Phys. D: Appl. Phys. 56 025003 [33] Schell V, Spetzler E, Wolff N, Bumke L, Kienle L, McCord J, Quandt E and Meyners D 2023 Sci. Rep. 13 8446 [34] Seemann K M, Gomonay O, Mokrousov Y, Hörner A, Valencia S, Klamser P, Kronast F, Erb A, Hindmarch A T, Wixforth A, Marrows C H and Fischer P 2022 Phys. Rev. B 105 144432 [35] Weiler M, Huebl H, Goerg F S, Czeschka F D, Gross R and Goennenwein S T B 2012 Phys. Rev. Lett. 108 176601 [36] Li W, Buford B, Jander A and Dhagat P 2014 IEEE Trans. Magn. 50 37 [37] Holanda J, Maior D S, Azevedo A and Rezende S M 2017 J. Magn. Magn. Mater. 432 507 [38] Meiklejohn W H and Bean C P 1956 Phys. Rev. 102 1413 [39] Meiklejohn W H and Bean C P 1957 Phys. Rev. 105 904 [40] LiW, Buford B, Jander A and Dhagat P 2014 J. Appl. Phys. 115 17E307 [41] Xu M, Yamamoto K, Puebla J, Baumgaertl K, Rana B, Miura K, Takahashi H, Grundler D, Maekawa S and Otani Y 2020 Sci. Adv. 6 eabb1724 [42] Huang M, Hu W, Zhang H and Bai F 2023 Phys. Rev. B 107 134401 [43] Kurimune Y, Matsuo M and Nozaki Y 2020 Phys. Rev. Lett. 124 217205 [44] Chen C, Ma M Y, Pan F and Song C 2024 Acta Phys. Sin. 73 058502 (in Chinese) [45] Arana M, Gamino M, Oliveira A B, Holanda J, Azevedo A, Rezende S M and Rodríguez-Suárez R L 2020 Phys. Rev. B 102 104405 [46] Wu R 2002 J. Appl. Phys. 91 7358 [47] Chen X, Zhou X, Cheng R, Song C, Zhang J,Wu Y, Ba Y, Li H, Sun Y, You Y, Zhao Y and Pan F 2019 Nat. Mater. 18 931 [48] Bordel C, Juraszek J, Cooke D W, Baldasseroni C, Mankovsky S, Minár J, Ebert H, Moyerman S, Fullerton E E and Hellman F 2012 Phys. Rev. Lett. 109 117201 [49] Zheng J, Zhou J, Zeng P, Liu Y, Shen Y, Yao W, Chen Z, Wu J, Xiong S, Chen Y, Shi X, Liu J, Fu Y and Duan H 2020 Appl. Phys. Lett. 116 123502 [50] Zhao C, Li Y, Zhang Z, Vogel M, Pearson J E, Wang J, Zhang W, Novosad V, Liu Q and Hoffmann A 2020 Phys. Rev. Appl. 13 054032 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|