Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(8): 088502    DOI: 10.1088/1674-1056/adce99
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Modulation of exchange bias in Py/IrMn films by surface acoustic waves

Jie Dong(董洁), Shuai Mi(米帅), Meihong Liu(刘美宏), Huiliang Wu(吴辉亮), Jinxuan Shi(石金暄), Huifang Qiao(乔慧芳), Qian Zhao(赵乾), Teng-Fei Zhang(张腾飞), Chenbo Zhao(赵晨博), Jianbo Wang(王建波), and Qingfang Liu(刘青芳)†
School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
Abstract  We investigate the surface acoustic wave (SAW) modulation of the exchange bias field ($H_{\rm EB}$) in Py/IrMn films deposited on LiNbO$_{3}$ substrates. We measured the anisotropic magnetoresistance (AMR) of the multilayer film when continuous SAW or pulsed SAW were applied and obtained $H_{\rm EB}$. With continuous SAW, the $H_{\rm EB}$ decreases continuously with power. While in the case of pulsed SAW, the $H_{\rm EB}$ first decreases and then stabilizes. Compared to pulsed SAW, the thermal effects from the continuous SAW lead to the continuous decrease of $H_{\rm EB}$ at higher SAW power, which is verified by the measurement of $H_{\rm EB}$ at different temperatures and input currents. Furthermore, our results show that pulsed SAW can effectively avoid thermal effects. The decrease of $H_{\rm EB}$ at smaller power in both continuous and pulsed SAW is mainly due to the SAW-induced dynamic strain field, which leads to a small perturbation in the magnetic moment of the FM layer. Combined with the AMR values measured at different angles during the saturation field, we believe that the SAW-induced dynamic strain field causes a 15$^\circ$ angle between the magnetic moment and the easy axis. Our experiments provide a different approach to manipulating $H_{\rm EB}$, opening up a potential avenue for future manipulation of antiferromagnetic moments.
Keywords:  exchange bias      surface acoustic wave      anisotropic magnetoresistance      thermal effect  
Received:  11 February 2025      Revised:  01 April 2025      Accepted manuscript online:  21 April 2025
PACS:  85.70.Ec (Magnetostrictive, magnetoacoustic, and magnetostatic devices)  
  77.80.bn (Strain and interface effects)  
  75.30.Gw (Magnetic anisotropy)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174166 and 12304144), the Fund from Beijing National Laboratory for Condensed Matter Physics (Grant No. 2024BNLCMPKF013), and the Fundamental Research Funds for the Central Universities (Grant No. lzujbky-2024-22).
Corresponding Authors:  Qingfang Liu     E-mail:  liuqf@lzu.edu.cn

Cite this article: 

Jie Dong(董洁), Shuai Mi(米帅), Meihong Liu(刘美宏), Huiliang Wu(吴辉亮), Jinxuan Shi(石金暄), Huifang Qiao(乔慧芳), Qian Zhao(赵乾), Teng-Fei Zhang(张腾飞), Chenbo Zhao(赵晨博), Jianbo Wang(王建波), and Qingfang Liu(刘青芳) Modulation of exchange bias in Py/IrMn films by surface acoustic waves 2025 Chin. Phys. B 34 088502

[1] Xu X, HuW, Jia Y, Huang Y, Shan X, Zhu G, Ren H, He Q, Guo Q and Yu G 2024 J. Phys. D: Appl. Phys. 57 225003
[2] Cai K, Jin T and Lew W S 2024 Natl. Sci. Rev. 11 nwad272
[3] Nogués J, Sort J, Langlais V, Skumryev V, Suriñach S, Muñoz J S and Baró M D 2005 Phys. Rep. 422 65
[4] Ehrmann T B A 2021 Coatings 11 122
[5] Blachowicz T, Ehrmann A and Wortmann M 2023 Nanomaterials- Basel 13 2418
[6] Li H, Pan S, Wang Z, Xiang B and Zhu W 2024 Chin. Phys. B 33 017504
[7] Zhang Z, Liu E, Zhang W, Wong P K J, Xu Z, Hu F, Li X, Tang J, Wee A T S and Xu F 2019 ACS Appl. Mater. Interfaces 11 8258
[8] Sheng P, Xie Y, Bai Y, Wang B, Zhang L, Wen X, Yang H, Chen X, Li X and Li R W 2019 Appl. Phys. Lett. 115 242403
[9] Rizwan S, Yu G Q, Zhang S, Zhao Y G and Han X F 2012 J. Appl. Phys. 112 064120
[10] Polisetty S, EchtenkampW, Jones K, He X, Sahoo S and Binek C 2010 Phys. Rev. B 82 134419
[11] Zhai K, Chai Y, Cong J, Shang D and Sun Y 2018 Phys. Rev. B 98 144405
[12] Holanda J, Saglam H, Karakas V, Zang Z, Li Y, Divan R, Liu Y, Ozatay O, Novosad V, Pearson J E and Hoffmann A 2020 Phys. Rev. Lett. 124 087204
[13] Deng Z, Wang X, Wang M, et al. 2023 Adv. Mater. 35 2209759
[14] Chen J Y, Thiyagarajah N, Xu H J and Coey J M D 2014 Appl. Phys. Lett. 104 152405
[15] Kumar R, Sarangi S N, Samal D and Hossain Z 2021 Phys. Rev. B 103 064421
[16] Nogués J, Sort J, Suriñach S, Muñoz J S, Baró M D, Bobo J F, Lüders U, Haanappel E, Fitzsimmons M R, Hoffmann A and Cai J W 2003 Appl. Phys. Lett. 82 3044
[17] Shiratsuchi Y, Wakatsu K, Nakamura T, Oikawa H, Maenou S, Narumi Y, Tazoe K, Mitsumata C, Kinoshita T, Nojiri H and Nakatani R 2012 Appl. Phys. Lett. 100 262413
[18] Vallobra P, Fache T, Xu Y, Zhang L, Malinowski G, Hehn M, Rojas- Sánchez J C, Fullerton E E and Mangin S 2017 Phys. Rev. B 96 144403
[19] Chatterjee J, Polley D, Pattabi A, Jang H, Salahuddin S and Bokor J 2022 Adv. Funct. Mater. 32 2107490
[20] Guo Z, Malinowski G, Vallobra P, Peng Y, Xu Y, Mangin S, Zhao W, Hehn M and Zhang B 2023 Chin. Phys. B 32 087507
[21] Peng S, Zhu D, Li W, Wu H, Grutter A J, Gilbert D A, Lu J, Xiong D, Cai W, Shafer P, Wang K L and Zhao W 2020 Nat. Electron. 3 757
[22] Lin P H, Yang B Y, Tsai M H, Chen P C, Huang K F, Lin H H and Lai C H 2019 Nat. Mater. 18 335
[23] Zhou Z P, Liu X H and Wang K Y 2020 Appl. Phys. Lett. 116 062403
[24] Saglam H, Rojas-Sanchez J C, Petit S, Hehn M, ZhangW, Pearson J E, Mangin S and Hoffmann A 2018 Phys. Rev. B 98 094407
[25] Zhao Q, Zhang T, He B, Li Z, Zhang S, Yu G, Wang J, Liu Q and Wei J 2024 Chin. Phys. B 33 058502
[26] Holanda J, Maior D S, Santos O A, Azevedo A and Rezende S M 2021 Appl. Phys. Lett. 118 022409
[27] Holanda J, Maior D S, Azevedo A and Rezende S M 2018 Nat. Phys. 14 500
[28] Davis S, Baruth A and Adenwalla S 2010 Appl. Phys. Lett. 97 232507
[29] Thevenard L, Camara I S, Majrab S, Bernard M, Rovillain P, Lemaître A, Gourdon C and Duquesne J Y 2016 Phys. Rev. B 93 134430
[30] Thevenard L, Camara I S, Prieur J Y, Rovillain P, Lemaître A, Gourdon C and Duquesne J Y 2016 Phys. Rev. B 93 140405
[31] Cao Y, Bian X N, Yan Z, Xi L, Lei N, Qiao L, Si M S, Cao J W, Yang D Z and Xue D S 2021 Appl. Phys. Lett. 119 012401
[32] Qiao H, Niu Y, Li X, Mi S, Liu X, Xue J, Wu S, Wang X, Liu Q and Wang J 2022 J. Phys. D: Appl. Phys. 56 025003
[33] Schell V, Spetzler E, Wolff N, Bumke L, Kienle L, McCord J, Quandt E and Meyners D 2023 Sci. Rep. 13 8446
[34] Seemann K M, Gomonay O, Mokrousov Y, Hörner A, Valencia S, Klamser P, Kronast F, Erb A, Hindmarch A T, Wixforth A, Marrows C H and Fischer P 2022 Phys. Rev. B 105 144432
[35] Weiler M, Huebl H, Goerg F S, Czeschka F D, Gross R and Goennenwein S T B 2012 Phys. Rev. Lett. 108 176601
[36] Li W, Buford B, Jander A and Dhagat P 2014 IEEE Trans. Magn. 50 37
[37] Holanda J, Maior D S, Azevedo A and Rezende S M 2017 J. Magn. Magn. Mater. 432 507
[38] Meiklejohn W H and Bean C P 1956 Phys. Rev. 102 1413
[39] Meiklejohn W H and Bean C P 1957 Phys. Rev. 105 904
[40] LiW, Buford B, Jander A and Dhagat P 2014 J. Appl. Phys. 115 17E307
[41] Xu M, Yamamoto K, Puebla J, Baumgaertl K, Rana B, Miura K, Takahashi H, Grundler D, Maekawa S and Otani Y 2020 Sci. Adv. 6 eabb1724
[42] Huang M, Hu W, Zhang H and Bai F 2023 Phys. Rev. B 107 134401
[43] Kurimune Y, Matsuo M and Nozaki Y 2020 Phys. Rev. Lett. 124 217205
[44] Chen C, Ma M Y, Pan F and Song C 2024 Acta Phys. Sin. 73 058502 (in Chinese)
[45] Arana M, Gamino M, Oliveira A B, Holanda J, Azevedo A, Rezende S M and Rodríguez-Suárez R L 2020 Phys. Rev. B 102 104405
[46] Wu R 2002 J. Appl. Phys. 91 7358
[47] Chen X, Zhou X, Cheng R, Song C, Zhang J,Wu Y, Ba Y, Li H, Sun Y, You Y, Zhao Y and Pan F 2019 Nat. Mater. 18 931
[48] Bordel C, Juraszek J, Cooke D W, Baldasseroni C, Mankovsky S, Minár J, Ebert H, Moyerman S, Fullerton E E and Hellman F 2012 Phys. Rev. Lett. 109 117201
[49] Zheng J, Zhou J, Zeng P, Liu Y, Shen Y, Yao W, Chen Z, Wu J, Xiong S, Chen Y, Shi X, Liu J, Fu Y and Duan H 2020 Appl. Phys. Lett. 116 123502
[50] Zhao C, Li Y, Zhang Z, Vogel M, Pearson J E, Wang J, Zhang W, Novosad V, Liu Q and Hoffmann A 2020 Phys. Rev. Appl. 13 054032
[1] Influence of exchange bias on spin torque ferromagnetic resonance for quantification of spin-orbit torque efficiency
Qian Zhao(赵乾), Tengfei Zhang(张腾飞), Bin He(何斌), Zimu Li(李子木), Senfu Zhang(张森富), Guoqiang Yu(于国强), Jianbo Wang(王建波), Qingfang Liu(刘青芳), and Jinwu Wei(魏晋武). Chin. Phys. B, 2024, 33(5): 058502.
[2] Stacking-dependent exchange bias in two-dimensional ferromagnetic/antiferromagnetic bilayers
Huiping Li(李慧平), Shuaiwei Pan(潘帅唯), Zhe Wang(王喆), Bin Xiang(向斌), and Wenguang Zhu(朱文光). Chin. Phys. B, 2024, 33(1): 017504.
[3] Electric modulation of anisotropic magnetoresistance in Pt/HfO2-x/NiOy/Ni heterojunctions
Xiaoyu Ye(叶晓羽), Xiaojian Zhu(朱小健), Huali Yang(杨华礼), Jipeng Duan(段吉鹏), Cui Sun(孙翠), and Run-Wei Li(李润伟). Chin. Phys. B, 2023, 32(8): 087305.
[4] Ultrafast antiferromagnet rearrangement in Co/IrMn/CoGd trilayers
Zongxia Guo(郭宗夏), Gregory Malinowski, Pierre Vallobra, Yi Peng(彭懿), Yong Xu(许涌), Stéphane Mangin, Weisheng Zhao(赵巍胜), Michel Hehn, and Boyu Zhang(张博宇). Chin. Phys. B, 2023, 32(8): 087507.
[5] Nonmonotonic anomalous Hall effect and anisotropic magnetoresistance in SrRuO3/PbZr0.52Ti0.48O3 heterostructures
Zhen-Li Wang(王振礼), Chao-Yang Kang(康朝阳), Cai-Hong Jia(贾彩虹), Hai-Zhong Guo(郭海中), and Wei-Feng Zhang(张伟风). Chin. Phys. B, 2023, 32(10): 107303.
[6] Temperature and strain sensitivities of surface and hybrid acoustic wave Brillouin scattering in optical microfibers
Yi Liu(刘毅), Yuanqi Gu(顾源琦), Yu Ning(宁钰), Pengfei Chen(陈鹏飞), Yao Yao(姚尧),Yajun You(游亚军), Wenjun He(贺文君), and Xiujian Chou(丑修建). Chin. Phys. B, 2022, 31(9): 094208.
[7] Perpendicular magnetization and exchange bias in epitaxial NiO/[Ni/Pt]2 multilayers
Lin-Ao Huang(黄林傲), Mei-Yu Wang(王梅雨), Peng Wang(王鹏), Yuan Yuan(袁源), Ruo-Bai Liu(刘若柏), Tian-Yu Liu(刘天宇), Yu Lu(卢羽), Jia-Rui Chen(陈家瑞), Lu-Jun Wei(魏陆军), Wei Zhang(张维), Biao You(游彪), Qing-Yu Xu(徐庆宇), and Jun Du(杜军). Chin. Phys. B, 2022, 31(2): 027506.
[8] Sign reversal of anisotropic magnetoresistance and anomalous thickness-dependent resistivity in Sr2CrWO6/SrTiO3 films
Chunli Yao(姚春丽), Tingna Shao(邵婷娜), Mingrui Liu(刘明睿), Zitao Zhang(张子涛), Weimin Jiang(姜伟民), Qiang Zhao(赵强), Yujie Qiao(乔宇杰), Meihui Chen(陈美慧), Xingyu Chen(陈星宇), Ruifen Dou(窦瑞芬), Changmin Xiong(熊昌民), and Jiacai Nie(聂家财). Chin. Phys. B, 2022, 31(10): 107302.
[9] Terahertz radiation generation by beating of two chirped laser pulses in a warm collisional magnetized plasma
Motahareh Arefnia, Mehdi Sharifian, and Mohammad Ghorbanalilu. Chin. Phys. B, 2021, 30(9): 094101.
[10] Quantifying plasmon resonance and interband transition contributions in photocatalysis of gold nanoparticle
Liang Dong(董亮), Chengyun Zhang(张成云), Lei Yan(严蕾), Baobao Zhang(张宝宝), Huan Chen(陈环), Xiaohu Mi(弥小虎), Zhengkun Fu(付正坤), Zhenglong Zhang(张正龙), and Hairong Zheng(郑海荣). Chin. Phys. B, 2021, 30(7): 077301.
[11] Anomalous anisotropic magnetoresistance in single-crystalline Co/SrTiO3(001) heterostructures
Shuang-Long Yang(杨双龙), De-Zheng Yang(杨德政), Yu Miao(缪宇), Cun-Xu Gao(高存绪), and De-Sheng Xue(薛德胜). Chin. Phys. B, 2021, 30(12): 127302.
[12] Influence of temperature on thermal relaxation of exchange bias field in CoFe/Cu/CoFe/IrMn spin valve
Xian-Jin Qi(祁先进), Ni-Na Yang(杨妮娜), Xiao-Xu Duan(段孝旭), and Xue-Zhu Li(李雪竹). Chin. Phys. B, 2021, 30(10): 107501.
[13] Electrostatic switch of magnetic core-shell in 0-3 type LSMO/PZT composite film
Bo Chen(陈波), Zi-Run Li(李滋润), Chuan-Fu Huang(黄传甫), Yong-Mei Zhang(张永梅). Chin. Phys. B, 2020, 29(9): 097702.
[14] Room-temperature electric control of exchange bias effect in CoO1-δ/Co films using Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (110) substrates
Xin Wen(闻馨), Rui Wu(吴锐), Wen-Yun Yang(杨文云), Chang-Sheng Wang(王常生), Shun-Quan Liu(刘顺荃), Jing-Zhi Han(韩景智), Jin-Bo Yang(杨金波). Chin. Phys. B, 2020, 29(9): 098503.
[15] Influence of the anisotropy on the magneto-acoustic response of magnetic surface acoustic wave resonators
Yawei Lu(鲁亚巍), Wenbin Hu(胡文彬), Wan Liu(刘婉), Feiming Bai(白飞明). Chin. Phys. B, 2020, 29(6): 067504.
No Suggested Reading articles found!