1. Department of Physics, Beijing Normal University, Beijing 100875, China; 2. State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
Abstract High-quality Sr2CrWO6 (SCWO) films have been grown on SrTiO3 (STO) substrate by pulsed laser deposition under low oxygen pressure. With decrease of the film thickness, a drastic conductivity increase is observed. The Hall measurements show that the thicker the film, the lower the carrier density. An extrinsic mechanism of charge doping due to the dominance of oxygen vacancies at SCWO/STO interfaces is proposed. The distribution and gradient of carrier concentration in SCWO films are considered to be related to this phenomenon. Resistivity behavior observed in these films is found to follow the variable range hopping model. It is revealed that with increase of the film thickness, the extent of disorder in the lattice increases, which gives a clear evidence of disorder-induced localization charge carriers in these films. Magnetoresistance measurements show that there is a negative magnetoresistance in SCWO films, which is considered to be caused by the magnetic scattering of magnetic elements Cr3+ and W5+. In addition, a sign reversal of anisotropic magnetoresistance (AMR) in SCWO film is observed for the first time, when the temperature varies across a characteristic value, TM. Magnetization—temperature measurements demonstrate that this AMR sign reversal is caused by the direction transition of easy axis of magnetization from the in-plane ferromagnetic order at T > TM to the out-of-plane at T < TM.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 92065110, 11974048, and 12074334).
Corresponding Authors:
Ruifen Dou, Changmin Xiong, Jiacai Nie
E-mail: ruifendou@bnu.edu.cn;cmxiong@bnu.edu.cn;jcnie@bnu.edu.cn
Cite this article:
Chunli Yao(姚春丽), Tingna Shao(邵婷娜), Mingrui Liu(刘明睿), Zitao Zhang(张子涛), Weimin Jiang(姜伟民), Qiang Zhao(赵强), Yujie Qiao(乔宇杰), Meihui Chen(陈美慧), Xingyu Chen(陈星宇), Ruifen Dou(窦瑞芬), Changmin Xiong(熊昌民), and Jiacai Nie(聂家财) Sign reversal of anisotropic magnetoresistance and anomalous thickness-dependent resistivity in Sr2CrWO6/SrTiO3 films 2022 Chin. Phys. B 31 107302
[1] Zhong W, Au C T and Du Y W 2013 Chin. Phys. B22 057501 [2] Mtougui S, et al. 2020 Chin. Phys. B29 056101 [3] Jeng H T and Guo G Y 2003 Phys. Rev. B67 094438 [4] Ohta I M and Inaguma Y 1996 Mater. Sci. Eng. B41 55 [5] Kobayashi K I, Kimura T, Tomioka Y, Sawada H and Terakura K 1999 Phys. Rev. B59 11159 [6] Philipp J B, Reisinger D, Schonecke M, Marx A, Erb A, Alff L and Gross R 2001 Appl. Phys. Lett.79 3654 [7] Kato H, Okuda T, Okimoto Y and Tomioka Y 2002 Appl. Phys. Lett.81 328 [8] Asano H, Kozuka N, Tsuzuki A and Matsui M 2004 Appl. Phys. Lett85 263 [9] Arulraj A, Ramesha K, Gopalakrishnan J and Rao C N R 2000 J. Solid State Chem.155 233 [10] Philipp J B, Majewski P, Alff L, et al. 2003 Phys. Rev. B59 144431 [11] Amraoui S, Feraoun A and Kerouad M 2019 J. Phys. Chem. Solid131 189 [12] Venimadhav A, Sher F, Attfield J P and Blamire M G 2006 Solid State Commun.138 314 [13] Sheng X, et al. 2020 Chin. Phys. Lett.37 107504 [14] Eckstein J N, Bozovic I, Donnell J O, Onellion M and Rzchowski M S 1996 Appl. Phys. Lett.69 1312 [15] Wang B, You L, Ren P, et al. 2013 Nat. Commun.4 2778 [16] Xu Y and Cai J W 2011 Acta Phys. Sin.60 117308 (in Chinese) [17] Gul Q, et al. 2019 Chin. Phys. B28 077502 [18] Sharma H, Tulapurkar A and Tomy C V 2014 Appl. Phys. Lett.105 222406 [19] Li M R, Retuerto M, Deng Z, et al. 2015 Angew. Chem. Int. Ed.54 12069 [20] Arévalo-López A M, McNally G M and Attfield J P 2015 Angew. Chem. Int. Ed.54 12074 [21] Zhang J, Ji W J, Xu J, et al. 2017 Sci. Adv.3 e1701473 [22] Fisher B, Chashka K B, Patlagan L and Reisner G M 2005 Phys. Rev. B71 104428 [23] Philipp J B, Reisinger D, Schonecke M, et al. 2003 J. Appl. Phys.93 6853 [24] Xue H X, Li C J, Hong Y P, et al. 2017 Phys. Rev. B96 235310 [25] Shalom M B, Tai C W, Lereah Y, et al. 2009 Phys. Rev. B80 140403 [26] Okada Y, Fujita T and Kawabe M 1995 Appl. Phys. Lett.67 676 [27] Yukawa M, Noritake H, Tanaka R and Iida S J 2003 Jpn. J. Appl. Phys.42 6532 [28] Huang J L, Yau B S, Chen C Y, Lo W T and Lii D F 2001 Ceram Int27 363 [29] Ohtomo A and Hwang H Y 2004 Nature427 423 [30] Kalabukhov A, Gunnarsson R, Börjesson J, et al. 2007 Phys. Rev. B75 121404 [31] Pavlenko N, Kopp T, Tsymbal E Y, Mannhart J and Sawatzky G A 2012 Phys. Rev. B86 064431 [32] Mott N F and Davis E A 1979 Science207 4436 [33] Mir F A 2012 Eur. Phys. J. Appl. Phys.57 20202 [34] Pan Y W, Zhu P W and Wang X 2015 Chin. Phys. B24 017503 [35] Mott N F 1969 J. Phil. Mag.19 835 [36] Yin S L, Liang X J and Zhao H W 2013 Chin. Phys. Lett.30 087305 [37] Egilmez M, Saber M M, Mansour A I, et al. 2008 Appl. Phys. Lett.93 182505 [38] Zhao S Y, Song Y, Liang H, et al. 2020 Chin. Phys. B29 077303 [39] Liu Y, Chu W W, Yang J Y, et al. 2018 Phys. Rev. B98 024425
Different behavior of upper critical field in Fe1-xSe single crystals Shunli Ni(倪顺利), Wei Hu(胡卫), Peipei Shen(沈沛沛), Zhongxu Wei(魏忠旭), Shaobo Liu(刘少博), Dong Li(李栋), Jie Yuan(袁洁), Li Yu(俞理), Kui Jin(金魁), Fang Zhou(周放), Xiaoli Dong(董晓莉), Zhongxian Zhao(赵忠贤). Chin. Phys. B, 2019, 28(12): 127401.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.