Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(8): 088503    DOI: 10.1088/1674-1056/adecfe
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Combined effects of oxygen vacancy and copper capping layer on infrared-transparent conductive properties of indium tin oxide films

Zhuang Ni(倪壮)†, Hu Wang(王虎), Han-Jun Hu(胡汉军), Lan-Xi Wang(王兰喜), Hu-Lin Zhang(张虎林), Kun Li (李坤), Ying He(贺颖), Hua-Ping Zuo(左华平), and Yan-Chun He(何延春)‡
Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou 730000, China
Abstract  Infrared-transparent conductors have attracted considerable attention due to their potential applications in electromagnetic shielding, infrared sensors, and photovoltaic devices. However, most known materials face the critical challenge of balancing high infrared transmittance with high electrical conductivity across the broad infrared spectral band (2.5-25 μm). While ultra-thin indium tin oxide (ITO) films have been demonstrated to exhibit superior infrared transmittance, their inherent low electrical conductivity necessitates additional enhancement strategies. This study systematically investigates the effects of oxygen vacancy concentration regulation and ultra-thin copper capping layer integration on the infrared optoelectronic properties of 20 nm-thick ITO films. A fundamental trade-off is revealed in ITO films that increased oxygen vacancy content enhances the electrical conductivity while compromising the infrared transmittance. Meanwhile, following the introduction of a Cu capping layer, the Cu/ITO system exhibits opposing dependencies of infrared transmittance and electrical conductivity on the capping layer thickness, with an optimum thickness of $\sim 3$ nm. Finally, by constructing a Cu (3 nm)/ITO (20 nm) heterostructure with varying oxygen vacancy content, we demonstrate the combined effect of the ultra-thin Cu capping layer and moderate oxygen vacancy content on optimizing the carrier transport network. This configuration simultaneously minimizes surface/interfacial reflection and absorption losses, achieving high infrared transmittance (0.861) and a low sheet resistance of 400 $\Omega $/sq. Our findings highlight the critical role of the combined effect of metal/oxide heterostructure design and defect engineering in optimizing infrared-transparent conductive properties.
Keywords:  infrared-transparent conductor      indium tin oxide      ultra-thin Cu capping layer      oxygen vacancy  
Received:  30 May 2025      Revised:  03 July 2025      Accepted manuscript online:  08 July 2025
PACS:  85.60.Bt (Optoelectronic device characterization, design, and modeling)  
  78.30.-j (Infrared and Raman spectra)  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2022YFB3806300).
Corresponding Authors:  Zhuang Ni, Yan-Chun He     E-mail:  johnsongallery@163.com;heyanch@163.com

Cite this article: 

Zhuang Ni(倪壮), Hu Wang(王虎), Han-Jun Hu(胡汉军), Lan-Xi Wang(王兰喜), Hu-Lin Zhang(张虎林), Kun Li (李坤), Ying He(贺颖), Hua-Ping Zuo(左华平), and Yan-Chun He(何延春) Combined effects of oxygen vacancy and copper capping layer on infrared-transparent conductive properties of indium tin oxide films 2025 Chin. Phys. B 34 088503

[1] Hu C Q, Zhou Z J, Zhang X Y, Guo K Y, Cui C, Liu Y K, Gu Z Q, Zhang W, Shen L and Zhu J Q 2023 Light-Sci. Appl. 12 98
[2] Park S Y, Han J I, KimWK and Kwak M G 2001 Thin Solid Films 397 49
[3] Chiang C H and Li Y M 2016 J. Disp. Technol. 12 1051
[4] Qiao F, Chu H Q, Xie Y and Weng Z K 2022 Int. J. Energy Res. 46 4071
[5] Cui W, Chen F J, Li Y W, Su X D and Sun B Q 2023 Mater. Today Nano 22 100329
[6] Lee J, Lee P, Lee H B, Hong S, Lee I, Yeo J, Lee S S, Kim T S, Lee D and Ko S H 2013 Adv. Funct. Mater. 23 4171
[7] Ahn M H, Cho E S and Kwon S J 2011 Appl. Surf. Sci. 258 1242
[8] Chuai Y H, Zhu C, Yue D and Bai Y 2022 Front. Chem. 10 847972
[9] Qiu J J, Liu Y, Cai Z H, Phan Q and Shi Z S 2022 Mater. Adv. 3 1079
[10] Matsui H, Shoji M, Higano S, Yoda H, Ono Y, Yang J Q, Misumi T and Fujita A 2022 ACS Appl. Mater. Interfaces 14 49313
[11] Liang Y L, Huang X J,Wen K,Wu Z F, Yao L X, Pan J S, LiuWC and Liu P G 2023 Appl. Sci. 13 4846
[12] Dixon S C, Scanlon D O, Carmalt C J and Parkin I P 2016 J. Mater. Chem. C 4 6946
[13] Low T and Avouris P 2014 ACS Nano 8 1086
[14] Lynch P J, Tripathi M, Graf A A, Ogilvie S P, Large M J, Salvage J and Dalton A B 2023 ACS Appl. Mater. Interfaces 15 11225
[15] Chuai Y H, Wang Y F and Bai Y 2023 Opt. Mater. 140 113804
[16] Chuai Y H, Shen H Z, Li Y D, Hu B, Zhang Y, Zheng C T and Wang Y D 2015 RSC Adv. 5 49301
[17] Gao G, Tong L J, Yang L, Sun C Q, Xu L G, Xia F, Geng F J, Xue J J, Gong H and Zhu J Q 2021 Appl. Phys. Lett. 118 261602
[18] Wu H, Kong D S, Ruan Z C, Hsu P C, Wang S, Yu Z F, Carney T J, Hu L B, Fan S H and Cui Y 2013 Nat. Nanotechnol. 8 421
[19] Cui C, Ding Q M, Yu S Y, Yu C L, Jiang D Y, Hu C Q, Gu Z Q and Zhu J Q 2023 Prog. Mater. Sci. 136 101112
[20] Ji W Y, Wang T, Zhu B Y, Zhang H, Wang R, Zhang D D, Chen L Z, Yang Q Y and Zhang H Z 2017 J. Mater. Chem. C 5 4543
[21] Yumoto H, Inoue T, Li S J, Sako T and Nishiyama K 1999 Thin Solid Films 345 38
[22] Tang Y L, Huang C H and Nomura K 2022 ACS Nano 16 3280
[23] Fallah H R, Varnamkhasti M G and Vahid M J 2010 Renew. Energy 35 1527
[24] Senthilkumar V, Vickraman P, Jayachandran M and Sanjeeviraja C 2010 Vacuum 84 864
[25] Dong L, Zhu G S, Xu H R, Jiang X P, Zhang X Y, Zhao Y Y, Yan D L, Yuan L and Yu A B 2019 Materials 12 958
[26] Bi R, Zheng C T, Yu W W, Zheng W T and Wang D D 2023 J. Appl. Phys. 134 165301
[27] Kim D and Lee S 2022 Appl. Surf. Sci. 604 154149
[28] Zhong Y K, Lai Y C, Tu M H, Chen B R, Fu S M, Yu P C and Lin A 2016 Opt. Express 24 A832
[29] Park J B, Rho H, Cha A N, Bae H, Lee S H, Ryu S W, Jeong T and Ha J S 2020 Appl. Surf. Sci. 516 145745
[30] Cleary J W, Smith E M, Leedy K D, Grzybowski G and Guo J P 2018 Opt. Mater. Express 8 1231
[31] Guo E J, Guo H Z, Lu H B, Jin K J, He M and Yang G Z 2011 Appl. Phys. Lett. 98 011905
[32] Bhowmik D and Bhattacharjee S 2022 Appl. Phys. A 128 605
[33] Guillén C and Herrero J 2016 Thin Solid Films 605 136
[34] Zhang B 2010 Mater. Sci. Semicon. Proc. 13 411
[35] Kim Y S, Park J H, Choi D H, Jang H S, Lee J H, Park H J, Choi J I, Ju D H, Lee J Y and Kim D 2007 Appl. Surf. Sci. 254 1524
[36] Chen D, Jiang Y T, Sun Z H, Huang Y L, Yu J and Chen T 2022 Thin Solid Films 752 139252
[37] Park S H, Lee S M, Ko E H, Kim T H, Nah Y C, Lee S J, Lee J H and Kim H K 2016 Sci Rep 6 33868
[38] Wei W Z, Hong R J, Wang J X, Tao C X and Zhang D W 2017 J. Mat. Sci. Technol. 33 1107
[39] Sun Q F, Shi H P and Yu S H 2022 J. Mater. Sci. Mater. Electron. 33 15098
[40] Bianchi C, Marques A C, Da Silva R C, Calmeiro T and Ferreira I 2021 Sci Rep 11 24313
[41] Wang L, Wang W H, Wang L Y, Liu G, Ge C Q, Xu K J, Wang B and Liu T H 2024 J. Opt. India 53 3947
[42] Fahsold G, Sinther M, Priebe A, Diez S and Pucci A 2002 Phys. Rev. B 65 235408
[43] Pucci A 2005 Phys. Status Solidi B 242 2704
[44] Morris J E 2022 Nano Express 3 014002
[45] Yun J 2017 Adv. Funct. Mater. 27 1606641
[46] Fang X, Mak C L, DaI J Y, Li, K, Ye H and Leung C W 2014 ACS Appl. Mater. Interfaces 6 15743
[47] Hövel M, Gompf B and Dressel M 2011 Thin Solid Films 519 2955
[48] He L,Wu Z H, Li Z B, Qu Q R and Liang R Q 2013 Eur. Phys. J. Appl. Phys. 62 30301
[49] Marcus M A 1998 Appl. Phys. Lett. 72 659
[50] Matyi R J, Hatzistergos M S and Lifshin E 2006 Thin Solid Films 515 1286
[51] Barnett C J, Kryvchenkova O, Wilson L S J, Maffeis T G G, Kalna K and Cobley R J 2015 J. Appl. Phys. 117 174306
[52] Kang H, Kimb D and Baik S 2014 Phys. Chem. Chem. Phys. 16 18759
[53] Chandra N, Sharma V, Chung G Y and Schroder D K 2011 Solid-State Electron. 64 73
[54] Qu M L, Guo Y N, Cai Y H, Nie Z W and Zhang C 2024 Small 20 10273
[55] Haacke G 1973 J. Appl. Phys. 44 4618
[56] Yang S M, Sun B S, Liu Y, Zhu J P, Song J X, Hao Z H, Zeng X Y, Zhao X, Shu Y C, Chen J, Yi J H and He J L 2020 Ceram. Int. 46 6342
[57] Pujilaksono B, Klement U, Nyborg L, Jelvestam U, Hill S and Burgard D 2005 Mater. Charact. 54 1
[58] Biswas P K, De A, Dua L K and Chkoda L 2006 Bull. Mater. Sci. 29 323
[59] Kim J S, Ho P K H, Thomas D S, Friend R H, Cacialli F, Bao GWand Li S F Y 1999 Chem. Phys. Lett. 315 307
[60] Idriss H 2021 Surf. Sci. 712 121894
[61] Shakiba M, Kosarian A and Farshidi E 2017 J. Mater. Sci.-Mater. Eletron. 28 787
[62] Wang M X,Wang G H, GongWB, Cheng S Z, Zhao L, Xu X H, Gong D R, Ye F, Mo L B, Diao H W and Wang M J 2023 Sol. Energy Mater. Sol. Cells 253 112229
[63] Nisha M and Jayaraj M K 2008 Appl. Surf. Sci. 255 1790
[64] Ren Y, Liu P, Liu R X, Wang Y W, Wei Y B, Jin L H and Zhao G Y 2022 J. Alloys Compd. 893 162304
[65] Zhou Q, Zhu S Z, Ma Z, Liu Y B, Liu L and Gao L H 2022 Ceram. Int. 48 11313
[66] Exarhos G J, Rose A and Windisch C F 1997 Thin Solid Films 308 56
[67] Guillén C and Herrero J 2008 Sol. Energy Mater. Sol. Cells. 92 938
[68] Venugopal N and Mitra A 2013 Appl. Surf. Sci. 285 357
[69] Sun H T, Yu H T, Wang G K, Sun X and Lian J 2012 J. Phys. Chem. C 116 9000
[70] Bi Y G, Liu Y F, Zhang X L, Yin D, Wang W Q, Feng J and Sun H B 2019 Adv. Opt. Mater. 7 1800778
[71] Kaiser N 2002 Appl. Optics 41 3053
[72] Chambliss D D,Wilson R J and Chiang S 1991 Phys. Rev. Lett. 66 1721
[73] Hövel M, Gompf B and Dressel M 2010 Phys. Rev. B 81 035402
[74] Oates T W H, Mckenzie D R and Bilek M M M 2004 Phys. Rev. B 70 195406
[75] Fedorov D V, Fahsold G, Pucci A, Zahn P and Mertig I 2007 Phys. Rev B 75 245427
[76] Meng F and Pucci A 2007 Phys. Status Solidi B 244 3739
[77] Lovrinčić R and Pucci A 2009 Phys. Rev. B 80 205404
[78] Solovyev A A, Semenov V A, Oskirko V O, Oskomov K V, Zakharov A N and Rabotkin S V 2017 Thin Solid Films 631 72
[79] Zhang C, Ji C G, Park Y B and Guo L J 2020 Adv. Opt. Mater. 9 2001298
[80] Ghosh D S, Martinez L, Giurgola S, Vergani P and Pruneri P 2009 Opt. Lett. 34 325
[81] Liu D, Fang L, Huang Z H, Ruan H B, Chen W X, Xiang J, Wu F and Liu G B 2024 Materials 17 5008
[1] Spatial electron tunneling leads to space-charge-limited current in organic hole transport materials
Shaofeng Chen(陈绍枫), Yanfei Lu(鲁燕飞), Dongcheng Chen(陈东成), and Shi-Jian Su(苏仕健). Chin. Phys. B, 2025, 34(7): 078101.
[2] Atomistic understanding of capacity loss in LiNiO2 for high-nickel Li-ion batteries: First-principles study
Shuai Peng(彭率), Li-Juan Chen(陈丽娟), Chang-Chun He(何长春), and Xiao-Bao Yang(杨小宝). Chin. Phys. B, 2024, 33(5): 058201.
[3] Low-temperature ferromagnetism in tensile-strained LaCoO2.5 thin film
Yang-Yang Fan(范洋洋), Jing Wang(王晶), Feng-Xia Hu(胡凤霞), Bao-He Li(李宝河), Ai-Cong Geng(耿爱丛), Zhuo Yin(殷卓), Cheng Zhang(张丞), Hou-Bo Zhou(周厚博), Meng-Qin Wang(王梦琴), Zi-Bing Yu(尉紫冰), and Bao-Gen Shen(沈保根). Chin. Phys. B, 2023, 32(8): 087504.
[4] Wake-up effect in Hf0.4Zr0.6O2 ferroelectric thin-film capacitors under a cycling electric field
Yilin Li(李屹林), Hui Zhu(朱慧), Rui Li(李锐), Jie Liu(柳杰), Jinjuan Xiang(项金娟), Na Xie(解娜), Zeng Huang(黄增), Zhixuan Fang(方志轩), Xing Liu(刘行), and Lixing Zhou(周丽星). Chin. Phys. B, 2022, 31(8): 088502.
[5] Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric
Xiaoting Sun(孙小婷), Yadong Zhang(张亚东), Kunpeng Jia(贾昆鹏), Guoliang Tian(田国良), Jiahan Yu(余嘉晗), Jinjuan Xiang(项金娟), Ruixia Yang(杨瑞霞), Zhenhua Wu(吴振华), and Huaxiang Yin(殷华湘). Chin. Phys. B, 2022, 31(7): 077701.
[6] Origin of the low formation energy of oxygen vacancies in CeO2
Han Xu(许涵), Tongtong Shang(尚彤彤), Xuefeng Wang(王雪锋), Ang Gao(高昂), and Lin Gu(谷林). Chin. Phys. B, 2022, 31(10): 107102.
[7] Effect of surface oxygen vacancy defects on the performance of ZnO quantum dots ultraviolet photodetector
Hongyu Ma(马宏宇), Kewei Liu(刘可为), Zhen Cheng(程祯), Zhiyao Zheng(郑智遥), Yinzhe Liu(刘寅哲), Peixuan Zhang(张培宣), Xing Chen(陈星), Deming Liu(刘德明), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2021, 30(8): 087303.
[8] Suppression of persistent photoconductivity in high gain Ga2O3 Schottky photodetectors
Haitao Zhou(周海涛), Lujia Cong(丛璐佳), Jiangang Ma(马剑钢), Bingsheng Li(李炳生), Haiyang Xu(徐海洋), and Yichun Liu(刘益春). Chin. Phys. B, 2021, 30(12): 126104.
[9] Density functional theory study of formaldehyde adsorption and decomposition on Co-doped defective CeO2 (110) surface
Yajing Zhang(张亚婧), Keke Song(宋可可), Shuo Cao(曹硕), Xiaodong Jian(建晓东), and Ping Qian(钱萍). Chin. Phys. B, 2021, 30(10): 103101.
[10] Oxygen vacancies and V co-doped Co3O4 prepared by ion implantation boosts oxygen evolution catalysis
Bo Sun(孙博), Dong He(贺栋), Hongbo Wang(王宏博), Jiangchao Liu(刘江超), Zunjian Ke(柯尊健), Li Cheng(程莉), and Xiangheng Xiao(肖湘衡). Chin. Phys. B, 2021, 30(10): 106102.
[11] Ab initio calculations on oxygen vacancy defects in strained amorphous silica
Bao-Hua Zhou(周保花), Fu-Jie Zhang(张福杰), Xiao Liu(刘笑), Yu Song(宋宇), Xu Zuo(左旭). Chin. Phys. B, 2020, 29(4): 047103.
[12] Effects of oxygen vacancy concentration and temperature on memristive behavior of SrRuO3/Nb:SrTiO3 junctions
Zhi-Cheng Wang(王志成), Zhang-Zhang Cui(崔璋璋), Hui Xu(徐珲), Xiao-Fang Zhai(翟晓芳), Ya-Lin Lu(陆亚林). Chin. Phys. B, 2019, 28(8): 087303.
[13] Improved performance of back-gate MoS2 transistors by NH3-plasma treating high-k gate dielectrics
Jian-Ying Chen(陈建颖), Xin-Yuan Zhao(赵心愿), Lu Liu(刘璐), Jing-Ping Xu(徐静平). Chin. Phys. B, 2019, 28(12): 128101.
[14] Synergistic effects of electrical and optical excitations on TiO2 resistive device
Qi Mao(毛奇), Wei-Jian Lin(林伟坚), Ke-Jian Zhu(朱科建), Yang Meng(孟洋), Hong-Wu Zhao(赵宏武). Chin. Phys. B, 2017, 26(8): 087702.
[15] Intrinsic luminescence centers in γ- and θ-alumina nanoparticles
Abdolvahab Amirsalari, Saber Farjami Shayesteh, Reza Taheri Ghahrizjani. Chin. Phys. B, 2017, 26(3): 036101.
No Suggested Reading articles found!