| INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Combined effects of oxygen vacancy and copper capping layer on infrared-transparent conductive properties of indium tin oxide films |
| Zhuang Ni(倪壮)†, Hu Wang(王虎), Han-Jun Hu(胡汉军), Lan-Xi Wang(王兰喜), Hu-Lin Zhang(张虎林), Kun Li (李坤), Ying He(贺颖), Hua-Ping Zuo(左华平), and Yan-Chun He(何延春)‡ |
| Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou 730000, China |
|
|
|
|
Abstract Infrared-transparent conductors have attracted considerable attention due to their potential applications in electromagnetic shielding, infrared sensors, and photovoltaic devices. However, most known materials face the critical challenge of balancing high infrared transmittance with high electrical conductivity across the broad infrared spectral band (2.5-25 μm). While ultra-thin indium tin oxide (ITO) films have been demonstrated to exhibit superior infrared transmittance, their inherent low electrical conductivity necessitates additional enhancement strategies. This study systematically investigates the effects of oxygen vacancy concentration regulation and ultra-thin copper capping layer integration on the infrared optoelectronic properties of 20 nm-thick ITO films. A fundamental trade-off is revealed in ITO films that increased oxygen vacancy content enhances the electrical conductivity while compromising the infrared transmittance. Meanwhile, following the introduction of a Cu capping layer, the Cu/ITO system exhibits opposing dependencies of infrared transmittance and electrical conductivity on the capping layer thickness, with an optimum thickness of $\sim 3$ nm. Finally, by constructing a Cu (3 nm)/ITO (20 nm) heterostructure with varying oxygen vacancy content, we demonstrate the combined effect of the ultra-thin Cu capping layer and moderate oxygen vacancy content on optimizing the carrier transport network. This configuration simultaneously minimizes surface/interfacial reflection and absorption losses, achieving high infrared transmittance (0.861) and a low sheet resistance of 400 $\Omega $/sq. Our findings highlight the critical role of the combined effect of metal/oxide heterostructure design and defect engineering in optimizing infrared-transparent conductive properties.
|
Received: 30 May 2025
Revised: 03 July 2025
Accepted manuscript online: 08 July 2025
|
|
PACS:
|
85.60.Bt
|
(Optoelectronic device characterization, design, and modeling)
|
| |
78.30.-j
|
(Infrared and Raman spectra)
|
|
| Fund: Project supported by the National Key R&D Program of China (Grant No. 2022YFB3806300). |
Corresponding Authors:
Zhuang Ni, Yan-Chun He
E-mail: johnsongallery@163.com;heyanch@163.com
|
Cite this article:
Zhuang Ni(倪壮), Hu Wang(王虎), Han-Jun Hu(胡汉军), Lan-Xi Wang(王兰喜), Hu-Lin Zhang(张虎林), Kun Li (李坤), Ying He(贺颖), Hua-Ping Zuo(左华平), and Yan-Chun He(何延春) Combined effects of oxygen vacancy and copper capping layer on infrared-transparent conductive properties of indium tin oxide films 2025 Chin. Phys. B 34 088503
|
[1] Hu C Q, Zhou Z J, Zhang X Y, Guo K Y, Cui C, Liu Y K, Gu Z Q, Zhang W, Shen L and Zhu J Q 2023 Light-Sci. Appl. 12 98 [2] Park S Y, Han J I, KimWK and Kwak M G 2001 Thin Solid Films 397 49 [3] Chiang C H and Li Y M 2016 J. Disp. Technol. 12 1051 [4] Qiao F, Chu H Q, Xie Y and Weng Z K 2022 Int. J. Energy Res. 46 4071 [5] Cui W, Chen F J, Li Y W, Su X D and Sun B Q 2023 Mater. Today Nano 22 100329 [6] Lee J, Lee P, Lee H B, Hong S, Lee I, Yeo J, Lee S S, Kim T S, Lee D and Ko S H 2013 Adv. Funct. Mater. 23 4171 [7] Ahn M H, Cho E S and Kwon S J 2011 Appl. Surf. Sci. 258 1242 [8] Chuai Y H, Zhu C, Yue D and Bai Y 2022 Front. Chem. 10 847972 [9] Qiu J J, Liu Y, Cai Z H, Phan Q and Shi Z S 2022 Mater. Adv. 3 1079 [10] Matsui H, Shoji M, Higano S, Yoda H, Ono Y, Yang J Q, Misumi T and Fujita A 2022 ACS Appl. Mater. Interfaces 14 49313 [11] Liang Y L, Huang X J,Wen K,Wu Z F, Yao L X, Pan J S, LiuWC and Liu P G 2023 Appl. Sci. 13 4846 [12] Dixon S C, Scanlon D O, Carmalt C J and Parkin I P 2016 J. Mater. Chem. C 4 6946 [13] Low T and Avouris P 2014 ACS Nano 8 1086 [14] Lynch P J, Tripathi M, Graf A A, Ogilvie S P, Large M J, Salvage J and Dalton A B 2023 ACS Appl. Mater. Interfaces 15 11225 [15] Chuai Y H, Wang Y F and Bai Y 2023 Opt. Mater. 140 113804 [16] Chuai Y H, Shen H Z, Li Y D, Hu B, Zhang Y, Zheng C T and Wang Y D 2015 RSC Adv. 5 49301 [17] Gao G, Tong L J, Yang L, Sun C Q, Xu L G, Xia F, Geng F J, Xue J J, Gong H and Zhu J Q 2021 Appl. Phys. Lett. 118 261602 [18] Wu H, Kong D S, Ruan Z C, Hsu P C, Wang S, Yu Z F, Carney T J, Hu L B, Fan S H and Cui Y 2013 Nat. Nanotechnol. 8 421 [19] Cui C, Ding Q M, Yu S Y, Yu C L, Jiang D Y, Hu C Q, Gu Z Q and Zhu J Q 2023 Prog. Mater. Sci. 136 101112 [20] Ji W Y, Wang T, Zhu B Y, Zhang H, Wang R, Zhang D D, Chen L Z, Yang Q Y and Zhang H Z 2017 J. Mater. Chem. C 5 4543 [21] Yumoto H, Inoue T, Li S J, Sako T and Nishiyama K 1999 Thin Solid Films 345 38 [22] Tang Y L, Huang C H and Nomura K 2022 ACS Nano 16 3280 [23] Fallah H R, Varnamkhasti M G and Vahid M J 2010 Renew. Energy 35 1527 [24] Senthilkumar V, Vickraman P, Jayachandran M and Sanjeeviraja C 2010 Vacuum 84 864 [25] Dong L, Zhu G S, Xu H R, Jiang X P, Zhang X Y, Zhao Y Y, Yan D L, Yuan L and Yu A B 2019 Materials 12 958 [26] Bi R, Zheng C T, Yu W W, Zheng W T and Wang D D 2023 J. Appl. Phys. 134 165301 [27] Kim D and Lee S 2022 Appl. Surf. Sci. 604 154149 [28] Zhong Y K, Lai Y C, Tu M H, Chen B R, Fu S M, Yu P C and Lin A 2016 Opt. Express 24 A832 [29] Park J B, Rho H, Cha A N, Bae H, Lee S H, Ryu S W, Jeong T and Ha J S 2020 Appl. Surf. Sci. 516 145745 [30] Cleary J W, Smith E M, Leedy K D, Grzybowski G and Guo J P 2018 Opt. Mater. Express 8 1231 [31] Guo E J, Guo H Z, Lu H B, Jin K J, He M and Yang G Z 2011 Appl. Phys. Lett. 98 011905 [32] Bhowmik D and Bhattacharjee S 2022 Appl. Phys. A 128 605 [33] Guillén C and Herrero J 2016 Thin Solid Films 605 136 [34] Zhang B 2010 Mater. Sci. Semicon. Proc. 13 411 [35] Kim Y S, Park J H, Choi D H, Jang H S, Lee J H, Park H J, Choi J I, Ju D H, Lee J Y and Kim D 2007 Appl. Surf. Sci. 254 1524 [36] Chen D, Jiang Y T, Sun Z H, Huang Y L, Yu J and Chen T 2022 Thin Solid Films 752 139252 [37] Park S H, Lee S M, Ko E H, Kim T H, Nah Y C, Lee S J, Lee J H and Kim H K 2016 Sci Rep 6 33868 [38] Wei W Z, Hong R J, Wang J X, Tao C X and Zhang D W 2017 J. Mat. Sci. Technol. 33 1107 [39] Sun Q F, Shi H P and Yu S H 2022 J. Mater. Sci. Mater. Electron. 33 15098 [40] Bianchi C, Marques A C, Da Silva R C, Calmeiro T and Ferreira I 2021 Sci Rep 11 24313 [41] Wang L, Wang W H, Wang L Y, Liu G, Ge C Q, Xu K J, Wang B and Liu T H 2024 J. Opt. India 53 3947 [42] Fahsold G, Sinther M, Priebe A, Diez S and Pucci A 2002 Phys. Rev. B 65 235408 [43] Pucci A 2005 Phys. Status Solidi B 242 2704 [44] Morris J E 2022 Nano Express 3 014002 [45] Yun J 2017 Adv. Funct. Mater. 27 1606641 [46] Fang X, Mak C L, DaI J Y, Li, K, Ye H and Leung C W 2014 ACS Appl. Mater. Interfaces 6 15743 [47] Hövel M, Gompf B and Dressel M 2011 Thin Solid Films 519 2955 [48] He L,Wu Z H, Li Z B, Qu Q R and Liang R Q 2013 Eur. Phys. J. Appl. Phys. 62 30301 [49] Marcus M A 1998 Appl. Phys. Lett. 72 659 [50] Matyi R J, Hatzistergos M S and Lifshin E 2006 Thin Solid Films 515 1286 [51] Barnett C J, Kryvchenkova O, Wilson L S J, Maffeis T G G, Kalna K and Cobley R J 2015 J. Appl. Phys. 117 174306 [52] Kang H, Kimb D and Baik S 2014 Phys. Chem. Chem. Phys. 16 18759 [53] Chandra N, Sharma V, Chung G Y and Schroder D K 2011 Solid-State Electron. 64 73 [54] Qu M L, Guo Y N, Cai Y H, Nie Z W and Zhang C 2024 Small 20 10273 [55] Haacke G 1973 J. Appl. Phys. 44 4618 [56] Yang S M, Sun B S, Liu Y, Zhu J P, Song J X, Hao Z H, Zeng X Y, Zhao X, Shu Y C, Chen J, Yi J H and He J L 2020 Ceram. Int. 46 6342 [57] Pujilaksono B, Klement U, Nyborg L, Jelvestam U, Hill S and Burgard D 2005 Mater. Charact. 54 1 [58] Biswas P K, De A, Dua L K and Chkoda L 2006 Bull. Mater. Sci. 29 323 [59] Kim J S, Ho P K H, Thomas D S, Friend R H, Cacialli F, Bao GWand Li S F Y 1999 Chem. Phys. Lett. 315 307 [60] Idriss H 2021 Surf. Sci. 712 121894 [61] Shakiba M, Kosarian A and Farshidi E 2017 J. Mater. Sci.-Mater. Eletron. 28 787 [62] Wang M X,Wang G H, GongWB, Cheng S Z, Zhao L, Xu X H, Gong D R, Ye F, Mo L B, Diao H W and Wang M J 2023 Sol. Energy Mater. Sol. Cells 253 112229 [63] Nisha M and Jayaraj M K 2008 Appl. Surf. Sci. 255 1790 [64] Ren Y, Liu P, Liu R X, Wang Y W, Wei Y B, Jin L H and Zhao G Y 2022 J. Alloys Compd. 893 162304 [65] Zhou Q, Zhu S Z, Ma Z, Liu Y B, Liu L and Gao L H 2022 Ceram. Int. 48 11313 [66] Exarhos G J, Rose A and Windisch C F 1997 Thin Solid Films 308 56 [67] Guillén C and Herrero J 2008 Sol. Energy Mater. Sol. Cells. 92 938 [68] Venugopal N and Mitra A 2013 Appl. Surf. Sci. 285 357 [69] Sun H T, Yu H T, Wang G K, Sun X and Lian J 2012 J. Phys. Chem. C 116 9000 [70] Bi Y G, Liu Y F, Zhang X L, Yin D, Wang W Q, Feng J and Sun H B 2019 Adv. Opt. Mater. 7 1800778 [71] Kaiser N 2002 Appl. Optics 41 3053 [72] Chambliss D D,Wilson R J and Chiang S 1991 Phys. Rev. Lett. 66 1721 [73] Hövel M, Gompf B and Dressel M 2010 Phys. Rev. B 81 035402 [74] Oates T W H, Mckenzie D R and Bilek M M M 2004 Phys. Rev. B 70 195406 [75] Fedorov D V, Fahsold G, Pucci A, Zahn P and Mertig I 2007 Phys. Rev B 75 245427 [76] Meng F and Pucci A 2007 Phys. Status Solidi B 244 3739 [77] Lovrinčić R and Pucci A 2009 Phys. Rev. B 80 205404 [78] Solovyev A A, Semenov V A, Oskirko V O, Oskomov K V, Zakharov A N and Rabotkin S V 2017 Thin Solid Films 631 72 [79] Zhang C, Ji C G, Park Y B and Guo L J 2020 Adv. Opt. Mater. 9 2001298 [80] Ghosh D S, Martinez L, Giurgola S, Vergani P and Pruneri P 2009 Opt. Lett. 34 325 [81] Liu D, Fang L, Huang Z H, Ruan H B, Chen W X, Xiang J, Wu F and Liu G B 2024 Materials 17 5008 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|