Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(8): 088501    DOI: 10.1088/1674-1056/add50a
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Self-powered broadband photodetector based on pyramid-structured Si/TiO2 heterojunction

Leyao Wu(吴乐瑶), Xinnan Shi(师馨楠), Haibo Fan(范海波), Qiujie Li(李秋洁)†, Peng Hu(胡鹏), and Feng Teng(滕凤)‡
School of Physics, Northwest University, Xi'an 710127, China
Abstract  Traditional Si-based photoconductive detectors face problems such as low response in the ultraviolet (UV) and infrared regions, high dark current, and low light absorption efficiency, which seriously limit their applications in the field of high-performance wide-spectrum detection. In this study, a self-powered broadband photodetector based on a Si/TiO$_2$ heterojunction is proposed. The detector has a pyramidal structure. By constructing a pyramidal microstructure on the surface of silicon, the light capture and absorption efficiency is significantly improved, representing a breakthrough in response performance in the visible and near-infrared (NIR) bands. In order to further enhance the photoelectric response in the UV band, a TiO$_2$ layer was coated on the surface of the silicon pyramid through a simple spin-coating method and annealing process. The introduction of TiO$_2$ effectively broadened the spectral response range of the photoelectric detector and further improved the light absorption of the device. Meanwhile, due to the built-in electric field formed by the n-TiO$_2$/p-Si heterojunction, the dark current was effectively reduced, and the responsivity was improved. Experiments showed that the device exhibits high responsivity, high detectivity, and relatively low dark current in the range of 365-1305 nm. Under light at 780 nm, the device's on-off ratio reached $2.7 \times 10^3$; its specific detectivity, $D^*$, was $3.9 \times 10^{11}$ Jones; and its responsivity reached 0.174 A/W. In addition, this detector does not require the assistance of expensive equipment. Its preparation process is simple and inexpensive, and there is no need for an external power supply, which gives it broad application potential in wearable devices, environmental monitoring, communications, biosensing, and other fields. This study provides a brand-new strategy for the design of new wide-spectrum detectors.
Keywords:  photodetector      heterojunction      photoconduction and photovoltaic effects      electronic transport  
Received:  31 March 2025      Revised:  28 April 2025      Accepted manuscript online:  07 May 2025
PACS:  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
  73.40.Lq (Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  73.50.Pz (Photoconduction and photovoltaic effects)  
  73.50.-h (Electronic transport phenomena in thin films)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51902255 and 51803168), the Natural Science Foundation of Shaanxi Province (Grant No. 2023-JC-YB-015), the Shaanxi Province Key Research and Development Projects (Grant No. 2022GY-356), and the Shaanxi Universities’ Youth Innovation Team (Grant No. 23JP174).
Corresponding Authors:  Qiujie Li, Feng Teng     E-mail:  liqj@nwu.edu.cn;tengfeng@nwu.edu.cn

Cite this article: 

Leyao Wu(吴乐瑶), Xinnan Shi(师馨楠), Haibo Fan(范海波), Qiujie Li(李秋洁), Peng Hu(胡鹏), and Feng Teng(滕凤) Self-powered broadband photodetector based on pyramid-structured Si/TiO2 heterojunction 2025 Chin. Phys. B 34 088501

[1] Lian X, Luo L, Dong M, Miao Z, Qi X, Cai Z and Wang L 2024 J. Mater. Sci. 59 21581
[2] Tang H, Lu D, Zhou Q, Luo S, Huang K, Li Z, Qi X and Zhong J 2022 Appl. Surf. Sci. 571 151335
[3] Zou J, Zhang S and Tang X 2024 Photonics 11 1014
[4] Vu T K O, Tran M T, Xuan Tu N, Thi Thanh Bao N, Thi Khanh Van N, Van Thanh H and Kim E K 2024 Mater. Sci. Semicond. Process. 181 108664
[5] Wang H C, Lin Y, Liu X, Deng X, Ben J, YuW, Zhu D and Liu X 2023 Chin. Phys. B 32 018504
[6] Zeng Z, Wang D, Fang X, Zhao C, Zhang B, Liu D, Chen T, Pan J, Liu S, Liu G, Liu T, Jin H, Jiao S, Zhao L and Wang J 2023 Mater. Today Nano 23 100372
[7] Gao W, Zheng Z, Huang L, Yao J, Zhao Y, Xiao Y and Li J 2019 ACS Appl. Mater. Interfaces 11 40222
[8] Ban G, Song J, Wang Z, Zhao X, Li Y, Yang J, Ye C, Teng F, Hu P and Fan H 2024 Surf. Interfaces 55 105319
[9] Wu L, Zhang M, Shi X, Hu P, Yu H and Teng F 2024 IEEE Sens. J. 24 20476
[10] Li X, Yu X, Zeng H, Boras G, Shen K, Zhang Y, Wu J, Choy K L and Liu H 2021 Appl. Phys. Lett. 119 53105
[11] Zhao Z, Zou C, Zhou E, Liu Q, Chen K, Wang X, He L, Gao F and Li S 2023 Surf. Interfaces 39 102909
[12] Xiao L, Liu Z and Feng W 2023 Opt. Mater. 137 113512
[13] Wang S, Lv Y, Trigub M V and Yang X 2025 J. Alloys Compd. 1010 177627
[14] Che M, Li Y, Wang B, Yuan J, Qi L, Zou Y, Liu M, Zhao X, Shi Y, Tan F, Feng Y, Li D and Li S 2024 ACS Photonics 11 1693
[15] Li S, Ting L, Zhongxing Y, Yan W, Like Z, Huayao T, Wenhua S and Zhongming Z 2024 Chin. Phys. B 33 018501
[16] Fahad O A, Ramizy A and Al-Rawi B K 2024 J. Mater. Sci.: Mater. Electron. 35 1822
[17] Hassan A I, Hammood I H and Addie A J 2024 Opt. Mater. 148 114974
[18] Song Z, Liu Y,Wang Q, Yuan S, Yang Y, Sun X, Xin Y, Liu M and Xia Z 2018 J. Mater. Sci. 53 7562
[19] Swain AB, Rath M, Biswas PP, Rao MSR and Murugavel P 2019 APL Materials 7 011106
[20] Wu J, Shi Z, Bai Z, Peng T and Luo B 2024 Ceram. Int. 50 16679
[21] Binghui W, Yanhui X, Shengyuan D, Jiahao L, Jun H, Huayao T, Ting L, Wenxin H, Baoshun Z and Zhongming Z 2023 Chin. Phys. B 32 098504
[22] Kim S H, Lee D, Moon S, Choi J H, Kim D, Kim J and Baek S W 2023 Adv. Funct. Mater. 33 2303778
[23] Wu H, Wu C, Guo C, Hu J, Guo D and He S 2024 Small 23 2312127
[24] Yang Z, Ma S, Shi Y, Hao X, Shang L, Han B, Qiu B and Xu B 2024 Opt. Mater. 150 115183
[25] Wang N, Liu X, Jiang D, Zhao M, Wang C, Zhang X and Ding S 2024 Cryst. Growth Des. 24 4781
[26] Shehu Y, Abbas A M A, Ahmed N M, Aslam S, Samsuri S A M and Loh W M E 2025 Optik 321 172188
[27] Li Z, Li Z, Zuo C and Fang X 2022 Adv. Mater. 34 2109083
[28] Park C, Elmughrabi A, Melis A, Kim S, Cho S and Yeom J Y 2024 Opt. Mater. 157 116165
[29] Yang D, Du F, Ren Y, Kang T, Hu P, Teng F and Fan H 2021 J. Mater. Chem. C 9 14146
[30] Yin Z, Shan Y, Yu M, Yang L, Song J, Hu P and Teng F M 2022 Mater. Sci. Semicond. Process. 148 106813
[31] Nallabala N K R, Kaleemulla S, Reddy M R, El-marghany A, Ravi N, Sambasivam S, Sekhar M C, Rosaiah P, Kushvaha S S, Kalaivani V, Shankar M V and Reddy V R M 2024 Silicon 16 2815
[32] Ratnesh R K, Singh M K and Singh J 2024 J. Mater. Sci.: Mater. Electron. 35 756
[33] Rodríguez D F and Perillo P M 2023 Opt. Mater. 135 113315
[34] Cao F, Liao Q, Deng K, Chen L, Li L and Zhang Y 2018 Nano Res. 11 1722
[35] Zhou H, Yang G, Ren D, Huang J, Gao Z, Duan J and Wang H 2022 Adv. Opt. Mater. 10 2201270
[36] Chu L, Zhou X, Xu C, Zhu S, Wu W, Wu R and Zhou S 2024 Ceram. Int. 51 9030
[37] Pei Z, Hu H, Li S and Ye C 2017 Langmuir 33 3569
[38] Cerofolini GF, Galati C and Renna L 2003 Surface and Interface Analysis 35 968
[39] Ji T, Liu Q, Zou R, Zhang Y, Wang L, Sang L, Liao M and Hu J 2017 J. Mater. Chem. C 5 12848
[40] Chen N, Li Y, Deng D, Liu X, Xing X, Xiao X andWang Y 2017 Sens. Actuators B: Chem. 238 491
[41] Agrohiya S, Kumar V, Rawal I, Dahiya S, Goyal P K, Kumar V and Punia R 2022 Silicon 14 11891
[42] Pandit B, Parida B, Jang H S and Heo K 2024 Nanomaterials 14 551
[43] Al-Hardan N H, Ahmed N M, Almessiere M A and Aziz A A 2020 Materials Research Express 6 126332
[44] Elzawiei Y S M, Abdulhameed A, Hashim M R and Halim M M 2023 Optical Materials 144 114353
[45] Nayef U M, Hubeatir K A and Abdulkareem Z J 2016 Optik 127 2806
[46] Nanda R K, Nath A, Singh L R and Sarkar M B 2023 IEEE Transactions on Nanotechnology 22 769
[47] Ji T, Liu Q, Zou R, Sun Y, Xu K, Sang L, Liao M, Koide Y, Yu L and Hu J 2016 Advanced Functional Materials 26 1400
[48] Ahmed A A, Hashim M R, Qahtan T F and Rashid M 2022 Ceramics International 48 20078
[49] Sudha A, Ashok A, Patil S, Yadav S K and Swaminathan P 2023 Solar Energy 266 112163
[1] Amorphous IGMO/IGZO heterojunction thin-film transistors with enhanced ultraviolet detection performance
Jichun Yao(姚继春), Yiyu Zhang(张怡宇), and Xingzhao Liu(刘兴钊). Chin. Phys. B, 2025, 34(5): 057104.
[2] Enhanced electronic and photoelectrical properties of two-dimensional Zn-doped SnS2
Xichen Chuai(揣喜臣), Peng Yin(殷鹏), Jiawei Wang(王嘉玮), Guanhua Yang(杨冠华), Congyan Lu(陆丛研), Di Geng(耿玓), Ling Li(李泠), Can Liu(刘灿), Zhongming Wei(魏钟鸣), and Nianduan Lu(卢年端). Chin. Phys. B, 2025, 34(5): 056101.
[3] Band alignment of heterojunctions formed by PtSe2 with doped GaN
Zhuoyang Lv(吕卓阳), Guijuan Zhao(赵桂娟), Wanting Wei(魏婉婷), Xiurui Lv(吕秀睿), and Guipeng Liu(刘贵鹏). Chin. Phys. B, 2025, 34(4): 047304.
[4] Non-negligible influence of vacancies and interlayer coupling on electronic properties of heavy ion irradiated SnSe2 FETs
Shifan Gao(高诗凡), Siyuan Ma(马思远), Shengxia Zhang(张胜霞), Pengliang Zhu(朱彭靓), Jie Liu(刘杰), Lijun Xu(徐丽君), Pengfei Zhai(翟鹏飞), Peipei Hu(胡培培), and Yan Li(李燕). Chin. Phys. B, 2025, 34(4): 046106.
[5] Highly responsive photodetectors based on NiPS3/WS2 van der Waals type-II heterostructures
Zhiteng Li(李志腾), Yian Wang(王易安), Zhenming Qiu(邱振铭), Lin Wang(王琳), Xiaofeng Liu(刘小峰), Zhengwei Chen(陈政委), and Xiao Zhang(张晓). Chin. Phys. B, 2025, 34(2): 027201.
[6] Lewis acid-doped transition metal dichalcogenides for ultraviolet-visible photodetectors
Heng Yang(杨恒), Mingjun Ma(马明军), Yongfeng Pei(裴永峰), Yufan Kang(康雨凡), Jialu Yan(延嘉璐), Dong He(贺栋), Changzhong Jiang(蒋昌忠), Wenqing Li(李文庆), and Xiangheng Xiao(肖湘衡). Chin. Phys. B, 2024, 33(9): 098501.
[7] Gate-field control of valley polarization in valleytronics
Ting-Ting Zhang(张婷婷), Yilin Han(韩依琳), Run-Wu Zhang(张闰午), and Zhi-Ming Yu(余智明). Chin. Phys. B, 2024, 33(6): 067303.
[8] Linear dichroism transition and polarization-sensitive photodetector of quasi-one-dimensional palladium bromide
Wan-Li Zhu(朱万里), Wei-Li Zhen(甄伟立), Rui Niu(牛瑞), Ke-Ke Jiao(焦珂珂), Zhi-Lai Yue(岳智来), Hui-Jie Hu(胡慧杰), Fei Xue(薛飞), and Chang-Jin Zhang(张昌锦). Chin. Phys. B, 2024, 33(6): 068101.
[9] Transport properties of Hall-type quantum states in disordered bismuthene
Jiaojiao Zhou(周娇娇), Jiangying Yu(余江应), Shuguang Cheng(成淑光), and Hua Jiang(江华). Chin. Phys. B, 2024, 33(4): 047105.
[10] BaTiO3/p-GaN/Au self-driven UV photodetector with bipolar photocurrent controlled by ferroelectric polarization
Wushuang Han(韩无双), Kewei Liu(刘可为), Jialin Yang(杨佳霖), Yongxue Zhu(朱勇学), Zhen Cheng(程祯), Xing Chen(陈星), Binghui Li(李炳辉), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2024, 33(4): 047701.
[11] Magnetic proximity effect in the two-dimensional ε-Fe2O3/NbSe2 heterojunction
Bingyu Che(车冰玉), Guojing Hu(胡国静), Chao Zhu(朱超), Hui Guo(郭辉), Senhao Lv(吕森浩), Xuanye Liu(刘轩冶), Kang Wu(吴康), Zhen Zhao(赵振), Lulu Pan(潘禄禄), Ke Zhu(祝轲), Qi Qi(齐琦), Yechao Han(韩烨超), Xiao Lin(林晓), Zi'an Li(李子安), Chengmin Shen(申承民), Lihong Bao(鲍丽宏), Zheng Liu(刘政), Jiadong Zhou(周家东), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2024, 33(2): 027502.
[12] Peak structure in the interlayer conductance of Moiré superlattices
Yizhou Tao(陶懿洲), Chao Liu(刘超), Mingwen Xiao(肖明文), and Henan Fang(方贺男). Chin. Phys. B, 2024, 33(10): 107301.
[13] Regulating Anderson localization with structural defect disorder
Mouyang Cheng(程谋阳), Haoxiang Chen(陈浩翔), and Ji Chen(陈基). Chin. Phys. B, 2024, 33(10): 107201.
[14] Sensitivity investigation of 100-MeV proton irradiation to SiGe HBT single event effect
Ya-Hui Feng(冯亚辉), Hong-Xia Guo(郭红霞), Yi-Wei Liu(刘益维), Xiao-Ping Ouyang(欧阳晓平), Jin-Xin Zhang(张晋新), Wu-Ying Ma(马武英), Feng-Qi Zhang(张凤祁), Ru-Xue Bai(白如雪), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2024, 33(1): 016104.
[15] High responsivity photodetectors based on graphene/WSe2 heterostructure by photogating effect
Shuping Li(李淑萍), Ting Lei(雷挺), Zhongxing Yan(严仲兴), Yan Wang(王燕), Like Zhang(张黎可), Huayao Tu(涂华垚), Wenhua Shi(时文华), and Zhongming Zeng(曾中明). Chin. Phys. B, 2024, 33(1): 018501.
No Suggested Reading articles found!