Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(9): 094208    DOI: 10.1088/1674-1056/ac5395
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Temperature and strain sensitivities of surface and hybrid acoustic wave Brillouin scattering in optical microfibers

Yi Liu(刘毅)1,2,3,4, Yuanqi Gu(顾源琦)1, Yu Ning(宁钰)1, Pengfei Chen(陈鹏飞)1, Yao Yao(姚尧)1, Yajun You(游亚军)5, Wenjun He(贺文君)6, and Xiujian Chou(丑修建)4,†
1 Taiyuan University of Technology, Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, Taiyuan 030024, China;
2 Taiyuan University of Technology, Institute of Optoelectronic Engineering, College of Physics and Optoelectronics, Taiyuan 030024, China;
3 Strong Digital Technology Co., Ltd. (Thinvent), Nanchang 410000, China;
4 North University of China, Key Laboratory of Instrumentation Science and Dynamic Measurement Ministry of Education, Taiyuan 030051, China;
5 North University of China, College of Mechatronics Engineering, Taiyuan 030051, China;
6 North University of China, Science and Technology on Electronic Test and Measurement Laboratory, School of Instrument and Electronics, Taiyuan 030051, China
Abstract  Temperature and strain sensitivities of surface acoustic wave (SAW) and hybrid acoustic wave (HAW) Brillouin scattering (BS) in 1 μm-1.3 μm diameter optical microfibers are simulated. In contrast to stimulated Brillouin scattering (SBS) from bulk acoustic wave in standard optical fiber, SAW and HAW BS, due to SAWs and HAWs induced by the coupling of longitudinal and shear waves and propagating along the surface and core of microfiber respectively, facilitate innovative detection in optical microfibers sensing. The highest temperature and strain sensitivities of the hybrid acoustic modes (HAMs) are 1.082 MHz/℃ and 0.0289 MHz/με, respectively, which is suitable for microfiber sensing application of high temperature and strain resolutions. Meanwhile, the temperature and strain sensitivities of the SAMs are less affected by fiber diameter changes, ranging from 0.05 MHz/℃/μ to 0.25 MHz/℃/μ and 1×10-4 MHz/με/μ to 5×10-4 MHz/με/μ, respectively. It can be found that that SAW BS for temperature and strain sensing would put less stress on manufacturing constraints for optical microfibers. Besides, the simultaneous sensing of temperature and strain can be realized by SAW and HAW BS, with temperature and strain errors as low as 0.30 ℃-0.34 ℃ and 14.47 με-16.25 με.
Keywords:  Brillouin scattering      surface acoustic waves      hybrid acoustic waves      optical microfiber sensing  
Received:  17 December 2021      Revised:  30 January 2022      Accepted manuscript online:  10 February 2022
PACS:  42.65.Es (Stimulated Brillouin and Rayleigh scattering)  
  78.35.+c (Brillouin and Rayleigh scattering; other light scattering)  
  42.65.-k (Nonlinear optics)  
  42.81.-i (Fiber optics)  
Fund: Project supported by the National Science Fund for Distinguished Young Scholars (Grant Nos. 61705157 and 61805167), the National Natural Science Foundation of China (Grant Nos. 61975142 and 11574228), China Postdoctoral Science Foundation (Grant No. 2020M682113), the Key Research and Development Projects of Shanxi Province, China (Grant No. 201903D121124), and Research Project Supported by Shanxi Scholarship Council of China (Grant No. 2020-112).
Corresponding Authors:  Xiujian Chou     E-mail:  chouxiujian@nuc.edu.cn

Cite this article: 

Yi Liu(刘毅), Yuanqi Gu(顾源琦), Yu Ning(宁钰), Pengfei Chen(陈鹏飞), Yao Yao(姚尧),Yajun You(游亚军), Wenjun He(贺文君), and Xiujian Chou(丑修建) Temperature and strain sensitivities of surface and hybrid acoustic wave Brillouin scattering in optical microfibers 2022 Chin. Phys. B 31 094208

[1] Eggleton B J, Poulton C G, Rakich P T, Steel M J and Bahl G 2019 Nat. Photon. 13 664
[2] Garmire E 2017 New J. Phys. 19 011003
[3] Zhong W E N, Stiller B, Elser D, Heim B, Marquardt C and Leuchs G 2015 Opt. Express 23 27707
[4] Wang G, Xu L X and C G 2018 Chin. Phys. Lett. 35 084201
[5] Jusoh Z, N S Shahabuddin, N M Ali, H Ahmad and Harun S W 2013 Chin. Phys. Lett. 30 114204
[6] Xu L L, Wang Y Y, Jiang L, Yang P, Zhang L and X D S 2021 Chin. Phys. B 30 84210
[7] Hayashi N, Suzuki K, Set S Y and Yamashita S 2017 Appl. Phys. Express 10 092501
[8] Mizuno Y, Zou W, He Z and Hotate K 2008 Opt. Express 16 12148
[9] Otterstrom N T, Behunin R O, Kittlaus E A, Wang Z and Rakich P T 2018 Science 360 1113
[10] Liu Y, Zhang M, Zhang J and Wang Y 2017 J. Lightwave Technol. 35 1744
[11] Ahmad H, Latif A A, Zulkifli M Z, Awang N A and Harun S W 2012 IEEE Sens. J. 12 2496
[12] Peled Y, Motil A and Tur M 2012 Opt. Express 20 8584
[13] Iezzi V L, Loranger S, Marois M and Kashyap R 2014 Opt. Lett. 39 857
[14] Wang R, Zhou L and Zhang X 2014 Optik 125 4864
[15] Hao Y, Ye Q, Pan Z, Yang F, Cai H, Qu R, Zhang Q and Yang Z 2012 IEEE Photon. J. 4 1686
[16] Yang Y L, Lin J B, Liu L M, Jia X H, Liang W Y, Xu S R and L J 2021 Chin. Phys. B 30 84205
[17] Liu T G, Yu Z, Jiang J F, Liu K and Li Z H 2017 Acta Phys. Sin. 66 070705 (in Chinese)
[18] Qian K, Wang F, Wang R, Zhen S, Wu X, Tu G, Zhang T, Yu B and Zhan L 2019 Opt. Express 27 25485
[19] Liu Y, Shang Y, Yi X, Guo R and Zheng Y 2020 Opt. Fiber Technol. 54 102106
[20] Chow D M, Yang Z, Soto M A and Thevenaz L 2018 Nat. Commun. 9 2990
[21] Dainese P, Russell P S J, Joly N, Knight J C, Wiederhecker G S, Fragnito H L, Laude V and Khelif A 2006 Nat. Phys. 2 388
[22] Shin H, Qiu W, Jarecki R, Cox J A, Olsson R H, Starbuck A, Wang Z and Rakich P T 2013 Nat. Commun. 4 1944
[23] Beugnot J C, Lebrun S, Pauliat G, Maillotte H, Laude V and Sylvestre T 2014 Nat. Commun. 5 5242
[24] Hou S L, Xue L M, Li S P, Liu Y J and Xu Y Z 2012 Acta Phys. Sin. 61 134206 (in Chinese)
[25] Jimenez Rioboo R J, Sanchez Sanchez A and Prieto C 2016 Phys. Rev. B 94 014313
[26] Chow D M, Beugnot J C, Godet A, Huy K P, Soto M A and Thevenaz L 2018 Opt. Lett. 43 1487
[27] Tchahame J C, Beugnot J C, Kudlinski A and Sylvestre T 2015 Opt. Lett. 40 4281
[28] Tchahame J C, Beugnot J C, Huy K P, Laude V, Kudlinski A and Sylvestre T 2016 Opt. Lett. 41 3269
[29] Florez O, Jarschel P F, Espinel Y A, Cordeiro C M, Mayer Alegre T P, Wiederhecker G S and Dainese P 2016 Nat. Commun. 7 11759
[30] Han D S, Lee I M, Park K H and Kang M S 2018 Appl. Phys. Lett. 113 121108
[31] Godet A, Ndao A, Sylvestre T, Pecheur V, Lebrun S, Pauliat G, Beugnot J C and Phan Huy K 2017 Optica 4 1232
[32] Every A G, Sumanya C, Mathe B A, Zhang X and Comins J D 2016 Ultrasonics 69 273
[33] Hong J T, Lee B W, Oh S H, Ko J H, Lee H, Lee C and Kim D 2018 J. Korean Phys. Soc. 73 960
[34] Kuria J, Wamwangi D, Comins D, Every A and Billing D 2020 J. Opt. Soc. Am. A-Opt. Image Sci. Vis. 37 C125
[35] Huang J D, Zhong X X, Liang H, Cheng L H, Li J and Guan B O 2017 IEEE Photon. J. 9 6801406
[36] Lee B, Lee S B, Rao Y, Liang H, Sun Q, Li J, Sun L P and Guan B O 2015 Fifth Asia-Pacific Optical Sensors Conference, May 20-22, 2015, Jeju, SOUTH KOREA, p. 96552R
[37] Huang C, Sun H, Liang H, Cheng L, Chen L, Bao X and Guan B O 2019 Appl. Phys. Express 12 082013
[38] Laude V and Beugnot J C 2013 AIP Adv. 3 042109
[39] Beugnot J C and Laude V 2012 Phys. Rev. B 86 224304
[40] Laude V and Beugnot J C 2015 New J. Phys. 17 125003
[41] Li H L, Zhang W, Huang Y D and Peng J D 2011 Chin. Phys. B 20 104211
[42] Godet A, Sylvestre T, Pecheur V, Chretien J, Beugnot J C and Kien Phan H 2019 APL Photon. 4 080804
[43] Wiederhecker G S, Dainese P and Mayer Alegre T P 2019 APL Photon. 4 071101
[44] Rakich P T, Reinke C, Camacho R, Davids P and Wang Z 2012 Phys. Rev. X 2 011008
[45] Guerette M, Kurkjian C R, Semjonov S, Huang L and Rouxel T 2016 J. Am. Ceram. Soc. 99 841
[46] Tchahame J C, Sylvestre T, Huy K P, Kudlinski A, Laude V and Beugnot J C 2016 Conference on Nonlinear Optics and its Applications IV, April 4-6, 2016, Brussels, BELGIUM, p. 98941J
[47] Dong Y, Ren G, Xiao H, Gao Y, Li H, Xiao S and Jian S 2017 IEEE Photon. Technol. Lett. 29 1955
[48] Jin W, Michie W C, Thursby G, Konstantaki M and Culshaw B 1997 Optical Engineering 36 598
[49] Xing C, Ke C, Guo Z, Yang K, Wang H, Zhong Y and Liu D 2018 Opt. Express 26 28793
[50] Xu Y, Ren M, Lu Y, Lu P, Lu P, Bao X, Wang L, Messaddeq Y and LaRochelle S 2016 Opt. Lett. 41 1138
[51] Xiao H, Ren G, Dong Y, Li H, Xiao S, Wu B and Jian S 2018 J. Opt. 20 065701
[52] Wang H, Gao S, Baker C, Wang Y, Chen L and Bao X 2020 Opt. Lett. 45 3301
[53] Liu Y, Zhang M, Wang P, Li L, Wang Y and Bao X 2015 IEEE Photon. J. 7 6802809
[1] Distributed analysis of forward stimulated Brillouin scattering for acoustic impedance sensing by extraction of a 2nd-order local spectrum
Yu-Lian Yang(杨玉莲), Jia-Bing Lin(林佳兵), Li-Ming Liu(刘黎明), Xin-Hong Jia(贾新鸿), Wen-Yan Liang(梁文燕), Shi-Rong Xu(许世蓉), and Li Jiang(姜利). Chin. Phys. B, 2021, 30(8): 084205.
[2] A low-threshold multiwavelength Brillouin fiber laser with double-frequency spacing based on a small-core fiber
Lu-Lu Xu(徐路路), Ying-Ying Wang(王莹莹), Li Jiang(江丽), Pei-Long Yang(杨佩龙), Lei Zhang(张磊), and Shi-Xun Dai(戴世勋). Chin. Phys. B, 2021, 30(8): 084210.
[3] Brillouin gain spectrum characterization in Ge-doped large-mode-area fibers
Xia-Xia Niu(牛夏夏), Yi-Feng Yang(杨依枫), Zhao Quan(全昭), Chun-Lei Yu(于春雷), Qin-Ling Zhou(周秦岭), Hui Shen(沈辉), Bing He(何兵), and Jun Zhou(周军). Chin. Phys. B, 2021, 30(12): 124203.
[4] Suppression of auto-resonant stimulated Brillouin scattering in supersonic flowing plasmas by different forms of incident lasers
S S Ban(班帅帅), Q Wang(王清), Z J Liu(刘占军), C Y Zheng(郑春阳), X T He(贺贤土). Chin. Phys. B, 2020, 29(9): 095202.
[5] Polarization dependence of gain and amplified spontaneous Brillouin scattering noise analysis for fiber Brillouin amplifier
Kuan-Lin Mu(穆宽林), Jian-Ming Shang(商建明), Li-Hua Tang(唐丽华), Zheng-Kang Wang(王正康), Song Yu(喻松), Yao-Jun Qiao(乔耀军). Chin. Phys. B, 2019, 28(9): 094216.
[6] Nondestructive determination of film thickness with laser-induced surface acoustic waves
Xiao Xia(肖夏), Kong Tao(孔涛), Qi Hai Yang(戚海洋), Qing Hui Quan(秦慧全). Chin. Phys. B, 2018, 27(9): 096802.
[7] Effect of stimulated Brillouin scattering on the gain saturation of distributed fiber Raman amplifier and its suppression by phase modulation
Zhang Yi-Chi (张一弛), Chen Wei (陈伟), Sun Shi-Lin (孙世林), Meng Zhou (孟洲). Chin. Phys. B, 2015, 24(9): 094209.
[8] Elastic, dielectric, and piezoelectric characterization of 0.92Pb(Zn1/3Nb2/3)O3-0.08PbTiO3 single crystal by Brillouin scattering
Fang Shao-Xi (方绍熙), Tang Dong-Yun (汤冬云), Chen Zhao-Ming (陈昭明), Zhang Hua (张华), Liu Yu-Long (刘玉龙). Chin. Phys. B, 2015, 24(2): 027802.
[9] A simple model of suppressing stimulated Brillouin scattering in optical fiber with frequency-modulated laser
Hu Xiao-Yang (胡晓阳), Chen Wei (陈伟), Tu Xiao-Bo (涂晓波), Meng Zhou (孟洲). Chin. Phys. B, 2014, 23(12): 124208.
[10] Effect of water temperature on pulse duration and energy of stimulated Brillouin scattering
Zhang Lei (张磊), Zhang Dong (张东), Li Jin-Zeng (李金增). Chin. Phys. B, 2013, 22(7): 074207.
[11] A new method for measuring the threshold of stimulated Brillouin scattering
Zhu Xue-Hua(朱学华), LŰ Zhi-Wei(吕志伟) and Wang Yu-Lei(王雨雷) . Chin. Phys. B, 2012, 21(7): 074205.
[12] Determination of elastic, piezoelectric, and dielectric constants of an R:BaTiO3 single crystal by Brillouin scattering
He Xiao-Kang(何小亢), Zeng Li-Bo(曾立波), Wu Qiong-Shui(吴琼水), Zhang Li-Yan(张丽艳), Zhu Ke(朱恪), and Liu Yu-Long(刘玉龙) . Chin. Phys. B, 2012, 21(6): 067801.
[13] A 168-W high-power single-frequency amplifier in an all-fiber configuration
Xiao Hu(肖虎), Dong Xiao-Lin(董小林), Zhou Pu(周朴), Xu Xiao-Jun(许晓军), and Zhao Guo-Min(赵国民) . Chin. Phys. B, 2012, 21(3): 034207.
[14] Stimulated Brillouin scattering-induced phase noise in an interferometric fiber sensing system
Chen Wei(陈伟), Meng Zhou(孟洲), Zhou Hui-Juan(周会娟), and Luo Hong(罗洪) . Chin. Phys. B, 2012, 21(3): 034212.
[15] Bursting behaviours in cascaded stimulated Brillouin scattering
Liu Zhan-Jun(刘占军), He Xian-Tu(贺贤土), Zheng Chun-Yang(郑春阳), and Wang Yu-Gang(王宇钢) . Chin. Phys. B, 2012, 21(1): 015202.
No Suggested Reading articles found!