ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Temperature and strain sensitivities of surface and hybrid acoustic wave Brillouin scattering in optical microfibers |
Yi Liu(刘毅)1,2,3,4, Yuanqi Gu(顾源琦)1, Yu Ning(宁钰)1, Pengfei Chen(陈鹏飞)1, Yao Yao(姚尧)1, Yajun You(游亚军)5, Wenjun He(贺文君)6, and Xiujian Chou(丑修建)4,† |
1 Taiyuan University of Technology, Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, Taiyuan 030024, China; 2 Taiyuan University of Technology, Institute of Optoelectronic Engineering, College of Physics and Optoelectronics, Taiyuan 030024, China; 3 Strong Digital Technology Co., Ltd. (Thinvent), Nanchang 410000, China; 4 North University of China, Key Laboratory of Instrumentation Science and Dynamic Measurement Ministry of Education, Taiyuan 030051, China; 5 North University of China, College of Mechatronics Engineering, Taiyuan 030051, China; 6 North University of China, Science and Technology on Electronic Test and Measurement Laboratory, School of Instrument and Electronics, Taiyuan 030051, China |
|
|
Abstract Temperature and strain sensitivities of surface acoustic wave (SAW) and hybrid acoustic wave (HAW) Brillouin scattering (BS) in 1 μm-1.3 μm diameter optical microfibers are simulated. In contrast to stimulated Brillouin scattering (SBS) from bulk acoustic wave in standard optical fiber, SAW and HAW BS, due to SAWs and HAWs induced by the coupling of longitudinal and shear waves and propagating along the surface and core of microfiber respectively, facilitate innovative detection in optical microfibers sensing. The highest temperature and strain sensitivities of the hybrid acoustic modes (HAMs) are 1.082 MHz/℃ and 0.0289 MHz/με, respectively, which is suitable for microfiber sensing application of high temperature and strain resolutions. Meanwhile, the temperature and strain sensitivities of the SAMs are less affected by fiber diameter changes, ranging from 0.05 MHz/℃/μ to 0.25 MHz/℃/μ and 1×10-4 MHz/με/μ to 5×10-4 MHz/με/μ, respectively. It can be found that that SAW BS for temperature and strain sensing would put less stress on manufacturing constraints for optical microfibers. Besides, the simultaneous sensing of temperature and strain can be realized by SAW and HAW BS, with temperature and strain errors as low as 0.30 ℃-0.34 ℃ and 14.47 με-16.25 με.
|
Received: 17 December 2021
Revised: 30 January 2022
Accepted manuscript online: 10 February 2022
|
PACS:
|
42.65.Es
|
(Stimulated Brillouin and Rayleigh scattering)
|
|
78.35.+c
|
(Brillouin and Rayleigh scattering; other light scattering)
|
|
42.65.-k
|
(Nonlinear optics)
|
|
42.81.-i
|
(Fiber optics)
|
|
Fund: Project supported by the National Science Fund for Distinguished Young Scholars (Grant Nos. 61705157 and 61805167), the National Natural Science Foundation of China (Grant Nos. 61975142 and 11574228), China Postdoctoral Science Foundation (Grant No. 2020M682113), the Key Research and Development Projects of Shanxi Province, China (Grant No. 201903D121124), and Research Project Supported by Shanxi Scholarship Council of China (Grant No. 2020-112). |
Corresponding Authors:
Xiujian Chou
E-mail: chouxiujian@nuc.edu.cn
|
Cite this article:
Yi Liu(刘毅), Yuanqi Gu(顾源琦), Yu Ning(宁钰), Pengfei Chen(陈鹏飞), Yao Yao(姚尧),Yajun You(游亚军), Wenjun He(贺文君), and Xiujian Chou(丑修建) Temperature and strain sensitivities of surface and hybrid acoustic wave Brillouin scattering in optical microfibers 2022 Chin. Phys. B 31 094208
|
[1] Eggleton B J, Poulton C G, Rakich P T, Steel M J and Bahl G 2019 Nat. Photon. 13 664 [2] Garmire E 2017 New J. Phys. 19 011003 [3] Zhong W E N, Stiller B, Elser D, Heim B, Marquardt C and Leuchs G 2015 Opt. Express 23 27707 [4] Wang G, Xu L X and C G 2018 Chin. Phys. Lett. 35 084201 [5] Jusoh Z, N S Shahabuddin, N M Ali, H Ahmad and Harun S W 2013 Chin. Phys. Lett. 30 114204 [6] Xu L L, Wang Y Y, Jiang L, Yang P, Zhang L and X D S 2021 Chin. Phys. B 30 84210 [7] Hayashi N, Suzuki K, Set S Y and Yamashita S 2017 Appl. Phys. Express 10 092501 [8] Mizuno Y, Zou W, He Z and Hotate K 2008 Opt. Express 16 12148 [9] Otterstrom N T, Behunin R O, Kittlaus E A, Wang Z and Rakich P T 2018 Science 360 1113 [10] Liu Y, Zhang M, Zhang J and Wang Y 2017 J. Lightwave Technol. 35 1744 [11] Ahmad H, Latif A A, Zulkifli M Z, Awang N A and Harun S W 2012 IEEE Sens. J. 12 2496 [12] Peled Y, Motil A and Tur M 2012 Opt. Express 20 8584 [13] Iezzi V L, Loranger S, Marois M and Kashyap R 2014 Opt. Lett. 39 857 [14] Wang R, Zhou L and Zhang X 2014 Optik 125 4864 [15] Hao Y, Ye Q, Pan Z, Yang F, Cai H, Qu R, Zhang Q and Yang Z 2012 IEEE Photon. J. 4 1686 [16] Yang Y L, Lin J B, Liu L M, Jia X H, Liang W Y, Xu S R and L J 2021 Chin. Phys. B 30 84205 [17] Liu T G, Yu Z, Jiang J F, Liu K and Li Z H 2017 Acta Phys. Sin. 66 070705 (in Chinese) [18] Qian K, Wang F, Wang R, Zhen S, Wu X, Tu G, Zhang T, Yu B and Zhan L 2019 Opt. Express 27 25485 [19] Liu Y, Shang Y, Yi X, Guo R and Zheng Y 2020 Opt. Fiber Technol. 54 102106 [20] Chow D M, Yang Z, Soto M A and Thevenaz L 2018 Nat. Commun. 9 2990 [21] Dainese P, Russell P S J, Joly N, Knight J C, Wiederhecker G S, Fragnito H L, Laude V and Khelif A 2006 Nat. Phys. 2 388 [22] Shin H, Qiu W, Jarecki R, Cox J A, Olsson R H, Starbuck A, Wang Z and Rakich P T 2013 Nat. Commun. 4 1944 [23] Beugnot J C, Lebrun S, Pauliat G, Maillotte H, Laude V and Sylvestre T 2014 Nat. Commun. 5 5242 [24] Hou S L, Xue L M, Li S P, Liu Y J and Xu Y Z 2012 Acta Phys. Sin. 61 134206 (in Chinese) [25] Jimenez Rioboo R J, Sanchez Sanchez A and Prieto C 2016 Phys. Rev. B 94 014313 [26] Chow D M, Beugnot J C, Godet A, Huy K P, Soto M A and Thevenaz L 2018 Opt. Lett. 43 1487 [27] Tchahame J C, Beugnot J C, Kudlinski A and Sylvestre T 2015 Opt. Lett. 40 4281 [28] Tchahame J C, Beugnot J C, Huy K P, Laude V, Kudlinski A and Sylvestre T 2016 Opt. Lett. 41 3269 [29] Florez O, Jarschel P F, Espinel Y A, Cordeiro C M, Mayer Alegre T P, Wiederhecker G S and Dainese P 2016 Nat. Commun. 7 11759 [30] Han D S, Lee I M, Park K H and Kang M S 2018 Appl. Phys. Lett. 113 121108 [31] Godet A, Ndao A, Sylvestre T, Pecheur V, Lebrun S, Pauliat G, Beugnot J C and Phan Huy K 2017 Optica 4 1232 [32] Every A G, Sumanya C, Mathe B A, Zhang X and Comins J D 2016 Ultrasonics 69 273 [33] Hong J T, Lee B W, Oh S H, Ko J H, Lee H, Lee C and Kim D 2018 J. Korean Phys. Soc. 73 960 [34] Kuria J, Wamwangi D, Comins D, Every A and Billing D 2020 J. Opt. Soc. Am. A-Opt. Image Sci. Vis. 37 C125 [35] Huang J D, Zhong X X, Liang H, Cheng L H, Li J and Guan B O 2017 IEEE Photon. J. 9 6801406 [36] Lee B, Lee S B, Rao Y, Liang H, Sun Q, Li J, Sun L P and Guan B O 2015 Fifth Asia-Pacific Optical Sensors Conference, May 20-22, 2015, Jeju, SOUTH KOREA, p. 96552R [37] Huang C, Sun H, Liang H, Cheng L, Chen L, Bao X and Guan B O 2019 Appl. Phys. Express 12 082013 [38] Laude V and Beugnot J C 2013 AIP Adv. 3 042109 [39] Beugnot J C and Laude V 2012 Phys. Rev. B 86 224304 [40] Laude V and Beugnot J C 2015 New J. Phys. 17 125003 [41] Li H L, Zhang W, Huang Y D and Peng J D 2011 Chin. Phys. B 20 104211 [42] Godet A, Sylvestre T, Pecheur V, Chretien J, Beugnot J C and Kien Phan H 2019 APL Photon. 4 080804 [43] Wiederhecker G S, Dainese P and Mayer Alegre T P 2019 APL Photon. 4 071101 [44] Rakich P T, Reinke C, Camacho R, Davids P and Wang Z 2012 Phys. Rev. X 2 011008 [45] Guerette M, Kurkjian C R, Semjonov S, Huang L and Rouxel T 2016 J. Am. Ceram. Soc. 99 841 [46] Tchahame J C, Sylvestre T, Huy K P, Kudlinski A, Laude V and Beugnot J C 2016 Conference on Nonlinear Optics and its Applications IV, April 4-6, 2016, Brussels, BELGIUM, p. 98941J [47] Dong Y, Ren G, Xiao H, Gao Y, Li H, Xiao S and Jian S 2017 IEEE Photon. Technol. Lett. 29 1955 [48] Jin W, Michie W C, Thursby G, Konstantaki M and Culshaw B 1997 Optical Engineering 36 598 [49] Xing C, Ke C, Guo Z, Yang K, Wang H, Zhong Y and Liu D 2018 Opt. Express 26 28793 [50] Xu Y, Ren M, Lu Y, Lu P, Lu P, Bao X, Wang L, Messaddeq Y and LaRochelle S 2016 Opt. Lett. 41 1138 [51] Xiao H, Ren G, Dong Y, Li H, Xiao S, Wu B and Jian S 2018 J. Opt. 20 065701 [52] Wang H, Gao S, Baker C, Wang Y, Chen L and Bao X 2020 Opt. Lett. 45 3301 [53] Liu Y, Zhang M, Wang P, Li L, Wang Y and Bao X 2015 IEEE Photon. J. 7 6802809 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|