Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(8): 087305    DOI: 10.1088/1674-1056/acd2b6
RAPID COMMUNICATION Prev   Next  

Electric modulation of anisotropic magnetoresistance in Pt/HfO2-x/NiOy/Ni heterojunctions

Xiaoyu Ye(叶晓羽)1,2,3, Xiaojian Zhu(朱小健)1,2,3,†, Huali Yang(杨华礼)1,2, Jipeng Duan(段吉鹏)1,2,3, Cui Sun(孙翠)1,2, and Run-Wei Li(李润伟)1,2,3,‡
1. CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;
2. Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;
3. College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  Electric field control of magnetism through nanoionics has attracted tremendous attention owing to its high efficiency and low power consumption. In solid-state dielectrics, an electric field drives the redistribution of ions to create one-dimensional magnetic conductive nanostructures, enabling the realization of intriguing magnetoresistance (MR) effects. Here, we explored the electric-controlled nickel and oxygen ion migration in Pt/HfO2-x/NiOy/Ni heterojunctions for MR modulation. By adjusting the voltage polarity and amplitude, the magnetic conductive filaments with mixed nickel and oxygen vacancy are constructed. This results in the reduction of device resistance by ~ 103 folds, and leads to an intriguing partial asymmetric MR effect. We show that the difference of the device resistance under positive and negative saturation magnetic fields exhibits good linear dependence on the magnetic field angle, which can be used for magnetic field direction detection. Our study suggests the potential of electrically controlled ion migration in creating novel magnetic nanostructures for sensor applications.
Keywords:  nanoionics      resistance random access memory      anisotropic magnetoresistance      angle detection  
Received:  10 April 2023      Revised:  29 April 2023      Accepted manuscript online:  05 May 2023
PACS:  73.40.Rw (Metal-insulator-metal structures)  
  75.47.-m (Magnetotransport phenomena; materials for magnetotransport)  
  81.05.-t (Specific materials: fabrication, treatment, testing, and analysis)  
  81.15.Jj (Ion and electron beam-assisted deposition; ion plating)  
Fund: Project supported by the National Key Research and Development Program of China(Grant No.2021YFA1202600), the National Natural Science Foundation of China (Grant Nos.92064011,62174164, 61974179, and 61674153), Youth Innovation Promotion Association of the CAS (Grant No.2020297), Natural Science Foundation of Zhejiang Province(Grant No.LR17E020001), Ningbo Natural Science Foundation (Grant No.202003N4029), and C. Wong Education Foundation (Grant No.GJTD-2020-11).
Corresponding Authors:  Xiaojian Zhu, Run-Wei Li     E-mail:  zhuxj@nimte.ac.cn;runweili@nimte.ac.cn

Cite this article: 

Xiaoyu Ye(叶晓羽), Xiaojian Zhu(朱小健), Huali Yang(杨华礼), Jipeng Duan(段吉鹏), Cui Sun(孙翠), and Run-Wei Li(李润伟) Electric modulation of anisotropic magnetoresistance in Pt/HfO2-x/NiOy/Ni heterojunctions 2023 Chin. Phys. B 32 087305

[1] Zhao T, Scholl A, Zavaliche F, Lee K, Barry M, Doran A, Cruz M P, Chu Y H, Ederer C, Spaldin N A, Das R R, Kim D M, Baek S H, Eom C B and Ramesh R 2006 Nat. Mater. 5 823
[2] Wang L, Wang D, Cao Q, Zheng Y, Xuan H, Gao J and Du Y 2012 Sci. Rep. 2 223
[3] Zhu X, Zhou J, Chen L, Guo S, Liu G, Li R W and Lu W D 2016 Adv. Mater. 28 7658
[4] Chen X, Zhu X, Xiao W, Liu G, Feng Y, Ding J and Li R W 2015 ACS Nano 9 4210
[5] Chiba D and Ono T 2013 J. Phys. D: Appl. Phys. 46 213001
[6] Ikeda S, Miura K, Yamamoto H, Mizunuma K, Gan H D, Endo M, Kanai S, Hayakawa J, Matsukura F and Ohno H 2010 Nat. Mater. 9 721
[7] Mangin S, Ravelosona D, Katine J A, Carey M J, Terris B D and Fullerton E E 2006 Nat. Mater. 5 210
[8] Meng H and Wang J P 2006 Appl. Phys. Lett. 88 172506
[9] Song C, Cui B, Peng J, Mao H and Pan F 2016 Chin. Phys. B 25 067502
[10] Matsukura F, Tokura Y and Ohno H 2015 Nat. Nanotechnol. 10 209
[11] Chen Q, Liu G, Gao S, Yi X, Xue W, Tang M, Zheng X and Li R W 2019 MRS Commun. 9 14
[12] Zhou X, Yan Y, Jiang M, Cui B, Pan F and Song C 2016 J. Phys. Chem. C 120 1633
[13] Molinari A, Hahn H and Kruk R 2019 Adv. Mater. 31 1806662
[14] Yang J J, Miao F, Pickett M D, Ohlberg D A, Stewart D R, Lau C N and Williams R S 2009 Nanotechnology 20 215201
[15] He Z Y, Wang T Y, Chen L, Zhu H, Sun Q Q, Ding S J and Zhang D W 2019 Nanoscale Res. Lett. 14 51
[16] Yang Y, Gao P, Gaba S, Chang T, Pan X and Lu W 2012 Nat. Commun. 3 732
[17] Wang H and Yan X 2019 Phys. Status Solidi RRL 13 1900073
[18] Changa C F, Chena J Y, Huanga G M, Lina T Y, Taia K L, Huanga C Y, Yehd P H and Wu W W 2018 Nano Energy 53 871
[19] Lai Y F, Chen F, Zeng Z C, Lin P J, Cheng S Y and Yu J L 2017 Chin. Phys. B 26 087305
[20] Pang H and Deng N 2014 Chin. Phys. Lett. 31 107303
[21] Otsuka S, Hamada Y, Shimizu T and Shingubara S 2014 Appl. Phys. A 118 613
[22] Li L, Liu Y, Teng J, Long S, Guo Q, Zhang M, Wu Y, Yu G, Liu Q, Lv H and Liu M 2017 Nanoscale Res. Lett. 12 210
[23] Yang Z, Zhan Q, Zhu X, Liu Y, Yang H, Hu B, Shang J, Pan L, Chen B and Li R W 2014 Europhys. Lett. 108 58004
[24] Xie Z, Gao S, Ye X, Yang H, Gong G, Lu Y, Ye J, Liu G and Li R W 2020 Phys. Chem. Chem. Phys. 22 26322
[25] Zhao D, Qiao S, Luo Y, Chen A, Zhang P, Zheng P, Sun Z, Guo M, Chiang F K, Wu J, Luo J, Li J, Kokado S, Wang Y and Zhao Y 2017 ACS Appl. Mater. Interfaces 9 10835
[26] Lee T S, Lee N J, Abbas H, Lee H H, Yoon T S and Kang C J 2020 ACS Appl. Electron. Mater. 2 1154
[27] Wu X, Mei S, Bosman M, Raghavan N, Zhang X, Cha D, Li K and Pey K L 2015 Adv. Electron. Mater. 1 1500130
[28] Aldana S, García-Fernández P, Rodríguez-Fernández A, Romero-Zaliz R, González M B, Jiménez-Molinos F, Campabadal F, Gómez-Campos F and Roldán J B 2017 J. Phys. D: Appl. Phys. 50 335103
[29] Rodriguez-Fernandez A, Aldana S, Campabadal F, Suñé J, Miranda E, Jiménez-Molinos F, Roldán J B and Gonzalez M 2017 IEEE T. Electron Dev. 64 3159
[30] Chen Y, Pourtois G, Adelmann C, Goux L, Govoreanu B, Degreave R, Jurczak M, Kittl J A, Groeseneken G and Wouters D J 2012 Appl. Phys. Lett. 100 113513
[31] Zhang Y, Mao G Q, Zhao X, Li Y, Zhang M, Wu Z, Wu W, Sun H, Guo Y, Wang L, Zhang X, Liu Q, Lv H, Xue K H, Xu G, Miao X, Long S and Liu M 2021 Nat. Commun. 12 7232
[32] Xue K H, Traoré B, Blaise P, Fonseca L R C, Vianello E, Molas G, Salvo B D, Ghibaudo G, Magyari-Kope B and Nishi Y 2014 IEEE T. Electron Dev. 61 1394
[33] Huang T K, Chen J Y, Ting Y H and Wu W W 2018 Adv. Electron. Mater. 4 1800256
[34] Tan T, Guo T, Wu Z and Liu Z 2016 Chin. Phys. B 25 117306
[35] Russo U, Ielmini D, Cagli C and Lacaita A L 2009 IEEE T. Electron Dev. 56 186
[36] Mei S, Bosman M, Nagarajan R, Wu X and Pey K L 2016 Microelectron. Reliab. 61 71
[37] Li S, Plaskett T S, Freitas P P, Bernardo J, Almeida B and Sousa J B 1998 IEEE T. Magn. 34 3772
[38] Carey M J and Berkowitz A E 1992 Appl. Phys. Lett. 60 3060
[39] Rheem Y, Yoo B Y, Beyermann W P and Myung N V 2007 Nanotechnology 18 125204
[40] Rheem Y, Yoo B Y, Koo B K, Beyermann W P and Myung N V 2007 J. Phys. D: Appl. Phys. 40 7267
[41] Roy A, Toro J A D, Amaral V S, Muniz P, Riveiro J M and Ferreira J M F 2014 J. Appl. Phys. 115 073904
[42] Agarwal S, Wang B, Yang H, Dhanapal P, Shen Y, Wang J, Wang H, Zhao J and Li R W 2018 Phys. Rev. B 97 214427
[43] Singh S, Rawat R, Muthu S E, D'Souza S W, Suard E, Senyshyn A, Banik S, Rajput P, Bhardwaj S, Awasthi A M, Ranjan R, Arumugam S, Schlagel D L, Lograsso T A, Chakrabarti A and Barman S R 2012 Phys. Rev. Lett. 109 246601
[1] Nonmonotonic anomalous Hall effect and anisotropic magnetoresistance in SrRuO3/PbZr0.52Ti0.48O3 heterostructures
Zhen-Li Wang(王振礼), Chao-Yang Kang(康朝阳), Cai-Hong Jia(贾彩虹), Hai-Zhong Guo(郭海中), and Wei-Feng Zhang(张伟风). Chin. Phys. B, 2023, 32(10): 107303.
[2] Sign reversal of anisotropic magnetoresistance and anomalous thickness-dependent resistivity in Sr2CrWO6/SrTiO3 films
Chunli Yao(姚春丽), Tingna Shao(邵婷娜), Mingrui Liu(刘明睿), Zitao Zhang(张子涛), Weimin Jiang(姜伟民), Qiang Zhao(赵强), Yujie Qiao(乔宇杰), Meihui Chen(陈美慧), Xingyu Chen(陈星宇), Ruifen Dou(窦瑞芬), Changmin Xiong(熊昌民), and Jiacai Nie(聂家财). Chin. Phys. B, 2022, 31(10): 107302.
[3] Anomalous anisotropic magnetoresistance in single-crystalline Co/SrTiO3(001) heterostructures
Shuang-Long Yang(杨双龙), De-Zheng Yang(杨德政), Yu Miao(缪宇), Cun-Xu Gao(高存绪), and De-Sheng Xue(薛德胜). Chin. Phys. B, 2021, 30(12): 127302.
[4] Manipulating magnetic anisotropies of Co/MgO(001) ultrathin films via oblique deposition
Syed Sheraz Ahmad, Wei He(何为), Jin Tang(汤进), Yong Sheng Zhang(张永圣), Bo Hu(胡泊), Jun Ye(叶军), Qeemat Gul, Xiang-Qun Zhang(张向群), Zhao-Hua Cheng(成昭华). Chin. Phys. B, 2016, 25(9): 097501.
[5] Enhanced resistance switching stability of transparent ITO/TiO2/ITO sandwiches
Meng Yang(孟洋), Zhang Pei-Jian(张培健), Liu Zi-Yu(刘紫玉), Liao Zhao-Liang(廖昭亮), Pan Xin-Yu(潘新宇), Liang Xue-Jin(梁学锦), Zhao Hong-Wu(赵宏武), and Chen Dong-Min(陈东敏). Chin. Phys. B, 2010, 19(3): 037304.
No Suggested Reading articles found!