Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 094101    DOI: 10.1088/1674-1056/abfb5d
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Terahertz radiation generation by beating of two chirped laser pulses in a warm collisional magnetized plasma

Motahareh Arefnia1,2, Mehdi Sharifian2,†, and Mohammad Ghorbanalilu1
1 Department of Physics, Shahid Beheshti University, 1983963113, Tehran, Iran;
2 Physics Department, Yazd University, Safaiyeh, Yazd, Iran
Abstract  Analytical equations of terahertz (THz) radiation generation based on beating of two laser beams in a warm collisional magnetized plasma with a ripple density profile are developed. In this regard, the effects of frequency chirp on the field amplitude of the terahertz radiation as well as the temperature and collision parameters are investigated. The ponderomotive force is generated in the frequency chirp of beams. Resonant excitation depends on tuning of the plasma beat frequency, magnetic field frequency, thermal velocity, collisional frequency, and effect of the frequency chirp with the plasma density. For optimum parameters of frequency and temperature the maximum THz amplitude is obtained.
Keywords:  plasma      THz radiation      thermal effect      collisional effect      frequency chirp  
Received:  17 December 2020      Revised:  22 February 2021      Accepted manuscript online:  26 April 2021
PACS:  41.75.Jv (Laser-driven acceleration?)  
  42.25.Bs (Wave propagation, transmission and absorption)  
  52.25.Xz (Magnetized plasmas)  
  94.20.Fg (Plasma temperature and density)  
Corresponding Authors:  Mehdi Sharifian     E-mail:  mehdi.sharifian@yazd.ac.ir

Cite this article: 

Motahareh Arefnia, Mehdi Sharifian, and Mohammad Ghorbanalilu Terahertz radiation generation by beating of two chirped laser pulses in a warm collisional magnetized plasma 2021 Chin. Phys. B 30 094101

[1] Mittleman D M 2017 J. Appl. Phys. 122 230901
[2] Chen H, Ma W, Huang Z, Zhang Y, Huang Y and Chen Y 2019 Adv. Opt. Mater. 7 1801318
[3] Tabata H 2015 IEEE Trans. Terahertz Sci. Technol. 5 1146
[4] Van Exter M, Fattinger C and Grischkowsky D 1989 Opt. Lett. 14 1128
[5] Neu J and Schmuttenmaer C A 2018 J. Appl. Phys. 124 231101
[6] Vicario C, Ovchinnikov A, Ashitkov S, Agranat M, Fortov V and Hauri C 2014 Opt. Lett. 39 6632
[7] Ravi K, Huang W R, Carbajo S, Nanni E A, Schimpf D N, Ippen E P and KäRtner F X 2015 Opt. Express 23 5253
[8] Ghaffari-Oskooei S and Aghamir F 2019 Phys. Plasmas 26 033108
[9] Ollmann Z, Fülöp J A, Hebling J and Almási G 2014 Opt. Commun. 315 159
[10] Jepsen P U, Jacobsen R H and Keiding S 1996 JOSA B 13 2424
[11] Singh R K, Singh M, Rajouria S K and Sharma R 2017 Phys. Plasmas 24 103103
[12] Leemans W, Van Tilborg J, Faure J, Geddes C, Tóth C, Schroeder C, Esarey E, Fubiani G and Dugan G 2004 Phys. Plasmas 11 2899
[13] Arkhipov R, Pakhomov A, Arkhipov M, Demircan A, Morgner U, Rosanov N and Babushkin I 2020 Phys. Rev. A 101 043838
[14] Malik A K, Malik H K and Stroth U 2012 Phys. Rev. E 85 016401
[15] Alirezaee H and Sharifian M 2018 Phys. Plasmas 25 043112
[16] Alirezaee H, Sharifian M, Darbani S M R, Majd A E and Saeed M 2020 IEEE Trans. Plasma Sci. 48 576
[17] Alirezaee H, Sharifian M, Darbani S M R, Saeed M, Majd A E and Niknam A R 2020 Eur. Phys. J. Plus 135 342
[18] Bakhtiari F, Esmaeilzadeh M and Ghafary B 2017 Phys. Plasmas 24 073112
[19] Minami Y, Kurihara T, Yamaguchi K, Nakajima M and Suemoto T 2013 Appl. Phys. Lett. 102 151106
[20] Zhao J, Gao H, Li S, Liu C, Chen Y, Peng Y and Zhu Y 2018 J. Opt. 20 105502
[21] Bhasin L and Tripathi V K 2009 Phys. Plasmas 16 103105
[22] Sedaghat M, Ettehadi-Abari M, Shokri B and Ghorbanalilu M 2015 Phys. Plasmas 22 033114
[23] Yoshii J, Lai C, Katsouleas T, Joshi C and Mori W 1997 Phys. Rev. Lett. 79 4194
[24] Malik A K, Singh K P and Sajal V 2014 Phys. Plasmas 21 073104
[25] Kumar M, Bhasin L and Tripathi V 2010 Phys. Scr. 81 045504
[26] Bogatskaya A, Gnezdovskaia N and Popov A 2020 Phys. Rev. E 102 043202
[27] Kumar S, Singh R K, Singh M and Sharma R 2015 Laser Particle Beams 33 257
[28] Kumar M, Tripathi V K and Jeong Y U 2015 Phys. Plasmas 22 063106
[29] Thakur V, Kant N and Vij S 2020 Phys. Scr. 95 045602
[30] Zhang X B, Qiao X, Cheng L H, Tang R A, Zhang A X and Xue J K 2015 Phys. Plasmas 22 094502
[31] Ettehadi-Abari M, Sedaghat M, Shokri B and Ghorbanalilu M 2015 Plasma Phys. Control. Fusion 57 085001
[32] Sharifian M, Sharifinejad H and Golbakhsi H 2014 J. Plasma Phys. 80 453
[33] Niknam A, Banjafar M, Jahangiri F, Barzegar S and Massudi R 2016 Phys. Plasmas 23 053110
[34] Zhang Z, Panov N, Andreeva V, Zhang Z, Slepkov A, Shipilo D, Thomson M, Wang T J, Babushkin I and Demircan A 2018 Appl. Phys. Lett. 113 241103
[35] Rezaei-Pandari M, Jahangiri F and Niknam A R 2019 Laser and Particle Beams 37 242
[36] Rezaei-Pandari M, Niknam A, Massudi R, Jahangiri F, Hassaninejad H and Khorashadizadeh S 2017 Phys. Plasmas 24 023112
[37] Razavinia S and Ghorbanalilu M 2019 Phys. Rev. Accelerators and Beams 22 111305
[38] Razavinia S and Ghorbanalilu M 2020 Plasma Phys. Control. Fusion 62 045007
[39] Mehta A, Rajput J and Kant N 2019 Laser Phys. 29 095405
[40] Eliezer S 2002 The interaction of high-power lasers with plasmas (CRC Press)
[41] Nguyen A, de Alaiza Martínez P G, Thiele I, Skupin S and Bergé L 2018 New J. Phys. 20 033026
[1] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[2] Ignition dynamics of radio frequency discharge in atmospheric pressure cascade glow discharge
Ya-Rong Zhang(张亚容), Qian-Han Han(韩乾翰), Jun-Lin Fang(方骏林), Ying Guo(郭颖), and Jian-Jun Shi(石建军). Chin. Phys. B, 2023, 32(2): 025201.
[3] Correction of intense laser-plasma interactions by QED vacuum polarization in collision of laser beams
Wen-Bo Chen(陈文博) and Zhi-Gang Bu(步志刚). Chin. Phys. B, 2023, 32(2): 025204.
[4] Time-resolved K-shell x-ray spectra of nanosecond laser-produced titanium tracer in gold plasmas
Zhencen He(何贞岑), Jiyan Zhang(张继彦), Jiamin Yang(杨家敏), Bing Yan(闫冰), and Zhimin Hu(胡智民). Chin. Phys. B, 2023, 32(1): 015202.
[5] High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples
Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(8): 084208.
[6] Fundamental study towards a better understanding of low pressure radio-frequency plasmas for industrial applications
Yong-Xin Liu(刘永新), Quan-Zhi Zhang(张权治), Kai Zhao(赵凯), Yu-Ru Zhang(张钰如), Fei Gao(高飞),Yuan-Hong Song(宋远红), and You-Nian Wang(王友年). Chin. Phys. B, 2022, 31(8): 085202.
[7] Combination of spark discharge and nanoparticle-enhanced laser-induced plasma spectroscopy
Qing-Xue Li(李庆雪), Dan Zhang(张丹), Yuan-Fei Jiang(姜远飞), Su-Yu Li(李苏宇), An-Min Chen(陈安民), and Ming-Xing Jin(金明星). Chin. Phys. B, 2022, 31(8): 085201.
[8] Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator
Meng Peng(彭猛), Jun-Bo Yang(杨俊波), Hao Chen(陈浩), Bo-Yuan Li(李博源), Xu-Lei Ge(葛绪雷), Xiao-Hu Yang(杨晓虎), Guo-Bo Zhang(张国博), and Yan-Yun Ma(马燕云). Chin. Phys. B, 2022, 31(8): 086102.
[9] Interaction between plasma and electromagnetic field in ion source of 10 cm ECR ion thruster
Hao Mou(牟浩), Yi-Zhou Jin(金逸舟), Juan Yang(杨涓), Xu Xia(夏旭), and Yu-Liang Fu(付瑜亮). Chin. Phys. B, 2022, 31(7): 075202.
[10] Plasma-wave interaction in helicon plasmas near the lower hybrid frequency
Yide Zhao(赵以德), Jinwei Bai(白进纬), Yong Cao(曹勇), Siyu Wu(吴思宇), Eduardo Ahedo, Mario Merino, and Bin Tian(田滨). Chin. Phys. B, 2022, 31(7): 075203.
[11] Influence of water environment on paint removal and the selection criteria of laser parameters
Li-Jun Zhang(张丽君), Kai-Nan Zhou(周凯南), Guo-Ying Feng(冯国英), Jing-Hua Han(韩敬华),Na Xie(谢娜), and Jing Xiao(肖婧). Chin. Phys. B, 2022, 31(6): 064205.
[12] Influence of oxygen addition on the discharge characteristics of an argon plasma jet at atmospheric pressure
Junyu Chen(陈俊宇), Na Zhao(赵娜), Jiacun Wu(武珈存), Kaiyue Wu(吴凯玥), Furong Zhang(张芙蓉),Junxia Ran(冉俊霞), Pengying Jia(贾鹏英), Xuexia Pang(庞学霞), and Xuechen Li(李雪辰). Chin. Phys. B, 2022, 31(6): 065205.
[13] Study on divertor plasma behavior through sweeping strike point in new lower divertor on EAST
Yu-Qiang Tao(陶余强), Guo-Sheng Xu(徐国盛), Ling-Yi Meng(孟令义), Rui-Rong Liang(梁瑞荣), Lin Yu(余林), Xiang Liu(刘祥), Ning Yan(颜宁), Qing-Quan Yang(杨清泉), Xin Lin(林新), and Liang Wang(王亮). Chin. Phys. B, 2022, 31(6): 065204.
[14] A nonlinear wave coupling algorithm and its programing and application in plasma turbulences
Yong Shen(沈勇), Yu-Hang Shen(沈煜航), Jia-Qi Dong(董家齐), Kai-Jun Zhao(赵开君), Zhong-Bing Shi(石中兵), and Ji-Quan Li(李继全). Chin. Phys. B, 2022, 31(6): 065206.
[15] Role of the zonal flow in multi-scale multi-mode turbulence with small-scale shear flow in tokamak plasmas
Hui Li(李慧), Jiquan Li(李继全), Zhengxiong Wang(王正汹), Lai Wei(魏来), and Zhaoqing Hu(胡朝清). Chin. Phys. B, 2022, 31(6): 065207.
No Suggested Reading articles found!