ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Terahertz radiation generation by beating of two chirped laser pulses in a warm collisional magnetized plasma |
Motahareh Arefnia1,2, Mehdi Sharifian2,†, and Mohammad Ghorbanalilu1 |
1 Department of Physics, Shahid Beheshti University, 1983963113, Tehran, Iran; 2 Physics Department, Yazd University, Safaiyeh, Yazd, Iran |
|
|
Abstract Analytical equations of terahertz (THz) radiation generation based on beating of two laser beams in a warm collisional magnetized plasma with a ripple density profile are developed. In this regard, the effects of frequency chirp on the field amplitude of the terahertz radiation as well as the temperature and collision parameters are investigated. The ponderomotive force is generated in the frequency chirp of beams. Resonant excitation depends on tuning of the plasma beat frequency, magnetic field frequency, thermal velocity, collisional frequency, and effect of the frequency chirp with the plasma density. For optimum parameters of frequency and temperature the maximum THz amplitude is obtained.
|
Received: 17 December 2020
Revised: 22 February 2021
Accepted manuscript online: 26 April 2021
|
PACS:
|
41.75.Jv
|
(Laser-driven acceleration?)
|
|
42.25.Bs
|
(Wave propagation, transmission and absorption)
|
|
52.25.Xz
|
(Magnetized plasmas)
|
|
94.20.Fg
|
(Plasma temperature and density)
|
|
Corresponding Authors:
Mehdi Sharifian
E-mail: mehdi.sharifian@yazd.ac.ir
|
Cite this article:
Motahareh Arefnia, Mehdi Sharifian, and Mohammad Ghorbanalilu Terahertz radiation generation by beating of two chirped laser pulses in a warm collisional magnetized plasma 2021 Chin. Phys. B 30 094101
|
[1] Mittleman D M 2017 J. Appl. Phys. 122 230901 [2] Chen H, Ma W, Huang Z, Zhang Y, Huang Y and Chen Y 2019 Adv. Opt. Mater. 7 1801318 [3] Tabata H 2015 IEEE Trans. Terahertz Sci. Technol. 5 1146 [4] Van Exter M, Fattinger C and Grischkowsky D 1989 Opt. Lett. 14 1128 [5] Neu J and Schmuttenmaer C A 2018 J. Appl. Phys. 124 231101 [6] Vicario C, Ovchinnikov A, Ashitkov S, Agranat M, Fortov V and Hauri C 2014 Opt. Lett. 39 6632 [7] Ravi K, Huang W R, Carbajo S, Nanni E A, Schimpf D N, Ippen E P and KäRtner F X 2015 Opt. Express 23 5253 [8] Ghaffari-Oskooei S and Aghamir F 2019 Phys. Plasmas 26 033108 [9] Ollmann Z, Fülöp J A, Hebling J and Almási G 2014 Opt. Commun. 315 159 [10] Jepsen P U, Jacobsen R H and Keiding S 1996 JOSA B 13 2424 [11] Singh R K, Singh M, Rajouria S K and Sharma R 2017 Phys. Plasmas 24 103103 [12] Leemans W, Van Tilborg J, Faure J, Geddes C, Tóth C, Schroeder C, Esarey E, Fubiani G and Dugan G 2004 Phys. Plasmas 11 2899 [13] Arkhipov R, Pakhomov A, Arkhipov M, Demircan A, Morgner U, Rosanov N and Babushkin I 2020 Phys. Rev. A 101 043838 [14] Malik A K, Malik H K and Stroth U 2012 Phys. Rev. E 85 016401 [15] Alirezaee H and Sharifian M 2018 Phys. Plasmas 25 043112 [16] Alirezaee H, Sharifian M, Darbani S M R, Majd A E and Saeed M 2020 IEEE Trans. Plasma Sci. 48 576 [17] Alirezaee H, Sharifian M, Darbani S M R, Saeed M, Majd A E and Niknam A R 2020 Eur. Phys. J. Plus 135 342 [18] Bakhtiari F, Esmaeilzadeh M and Ghafary B 2017 Phys. Plasmas 24 073112 [19] Minami Y, Kurihara T, Yamaguchi K, Nakajima M and Suemoto T 2013 Appl. Phys. Lett. 102 151106 [20] Zhao J, Gao H, Li S, Liu C, Chen Y, Peng Y and Zhu Y 2018 J. Opt. 20 105502 [21] Bhasin L and Tripathi V K 2009 Phys. Plasmas 16 103105 [22] Sedaghat M, Ettehadi-Abari M, Shokri B and Ghorbanalilu M 2015 Phys. Plasmas 22 033114 [23] Yoshii J, Lai C, Katsouleas T, Joshi C and Mori W 1997 Phys. Rev. Lett. 79 4194 [24] Malik A K, Singh K P and Sajal V 2014 Phys. Plasmas 21 073104 [25] Kumar M, Bhasin L and Tripathi V 2010 Phys. Scr. 81 045504 [26] Bogatskaya A, Gnezdovskaia N and Popov A 2020 Phys. Rev. E 102 043202 [27] Kumar S, Singh R K, Singh M and Sharma R 2015 Laser Particle Beams 33 257 [28] Kumar M, Tripathi V K and Jeong Y U 2015 Phys. Plasmas 22 063106 [29] Thakur V, Kant N and Vij S 2020 Phys. Scr. 95 045602 [30] Zhang X B, Qiao X, Cheng L H, Tang R A, Zhang A X and Xue J K 2015 Phys. Plasmas 22 094502 [31] Ettehadi-Abari M, Sedaghat M, Shokri B and Ghorbanalilu M 2015 Plasma Phys. Control. Fusion 57 085001 [32] Sharifian M, Sharifinejad H and Golbakhsi H 2014 J. Plasma Phys. 80 453 [33] Niknam A, Banjafar M, Jahangiri F, Barzegar S and Massudi R 2016 Phys. Plasmas 23 053110 [34] Zhang Z, Panov N, Andreeva V, Zhang Z, Slepkov A, Shipilo D, Thomson M, Wang T J, Babushkin I and Demircan A 2018 Appl. Phys. Lett. 113 241103 [35] Rezaei-Pandari M, Jahangiri F and Niknam A R 2019 Laser and Particle Beams 37 242 [36] Rezaei-Pandari M, Niknam A, Massudi R, Jahangiri F, Hassaninejad H and Khorashadizadeh S 2017 Phys. Plasmas 24 023112 [37] Razavinia S and Ghorbanalilu M 2019 Phys. Rev. Accelerators and Beams 22 111305 [38] Razavinia S and Ghorbanalilu M 2020 Plasma Phys. Control. Fusion 62 045007 [39] Mehta A, Rajput J and Kant N 2019 Laser Phys. 29 095405 [40] Eliezer S 2002 The interaction of high-power lasers with plasmas (CRC Press) [41] Nguyen A, de Alaiza Martínez P G, Thiele I, Skupin S and Bergé L 2018 New J. Phys. 20 033026 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|