Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(6): 067504    DOI: 10.1088/1674-1056/ab8375
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Influence of the anisotropy on the magneto-acoustic response of magnetic surface acoustic wave resonators

Yawei Lu(鲁亚巍), Wenbin Hu(胡文彬), Wan Liu(刘婉), Feiming Bai(白飞明)
State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology, Chengdu 610054, China
Abstract  One-port magnetic surface acoustic wave (MSAW) resonators are fabricated by stacking multilayered (FeCoSiB/SiO2)n films directly on top of interdigital electrodes. It is shown that the magneto-acoustic response of the MSAW resonators critically depends the hysteresis of ΔE effect. For the magnetic multilayer without induced magnetic anisotropy, the resonance frequency (fR) exhibits a butterfly-like dependence on the external field, therefore, enabling bipolar detection of magnetic field smaller than its coercive field. However, for the magnetic multilayers with induced magnetic anisotropy, butterfly-like or loop-like fR-H curves are measured along the interdigtial electrode fingers or the SAW propagation direction, which can be attributed to the competition between the magnetic field-induced anisotropy and the stress-induced or shape anisotropy.
Keywords:  surface acoustic wave      magnetic field sensor      magnetoelastic property  
Received:  04 February 2020      Revised:  24 March 2020      Accepted manuscript online: 
PACS:  75.70.Cn (Magnetic properties of interfaces (multilayers, superlattices, heterostructures))  
  68.65.-k (Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)  
  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
  77.65.Dq (Acoustoelectric effects and surface acoustic waves (SAW) in piezoelectrics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61871081) and the National Key Scientific Instrument and Equipment Development Project of China (Grant No. 51827802).
Corresponding Authors:  Feiming Bai     E-mail:  fmbai@uestc.edu.cn

Cite this article: 

Yawei Lu(鲁亚巍), Wenbin Hu(胡文彬), Wan Liu(刘婉), Feiming Bai(白飞明) Influence of the anisotropy on the magneto-acoustic response of magnetic surface acoustic wave resonators 2020 Chin. Phys. B 29 067504

[1] Nan C W, Bichurin M, Dong S, Viehland D and Srinivasan G 2008 J. Appl. Phys. 103 031101
[2] Hu J M, Chen L Q and Nan C W 2016 Adv. Mater. 28 15
[3] Cheng J H, Wang Y G and Dan E 2015 Chin. Phys. Lett. 32 17503
[4] Dong S, Zhai J, Bai F, Li J, Viehland D and Lograsso T A 2005 J. Appl. Phys. 97 103902
[5] Dong S, Zhai J, Bai F, Li J F and Viehland D 2005 Appl. Phys. Lett. 87 062502
[6] Dong S, Zhai J, Xing Z, Li J F and Viehland D 2005 Appl. Phys. Lett. 86 102901
[7] Wang Y, Gray D, Berry D, Gao J, Li M, Li J and Viehland D 2011 Adv. Mater. 23 4111
[8] Chu Z, Shi H, Shi W, Liu G, Wu J, Yang J and Dong S 2017 Adv. Mater. 29 1606022
[9] Lage E, Kirchhof C, Hrkac V, Kienle L, Jahns R, Knöchel R, Quandt E and Meyners D 2012 Nat. Mater. 11 523
[10] Kirchhof C, Krantz M, Teliban I, Jahns R, Marauska S, Wagner B, Knöchel R, Gerken M, Meyners D and Quandt E 2013 Appl. Phys. Lett. 102 232905
[11] Hayes P, Klug M J, Toxværd S, Durdaut P, Schell V, Teplyuk A, Burdin D, Winkler A, Weser R and Fetisov Y 2019 Sci. Rep. 9 1
[12] Viehland D, Wuttig M, McCord J and Quandt E 2018 MRS Bull. 43 834
[13] Ou-Yang J, Liu X, Zhou H, Zou Z, Yang Y, Li J, Zhang Y, Zhu B, Chen S and Yang X 2018 J. Phys. D: Appl. Phys. 51 324005
[14] Jiles D 1995 J. J. Phys. D: Appl. Phys. 28 1537
[15] Ludwig A and Quandt E 2002 IEEE Tran. Magn. 38 2829
[16] Jahns R, Zabel S, Marauska S, Gojdka B, Wagner B, Knöchel R, Adelung R and Faupel F 2014 Appl. Phys. Lett. 105 052414
[17] Zabel S, Kirchhof C, Yarar E, Meyners D, Quandt E and Faupel F 2015 Appl. Phys. Lett. 107 152402
[18] Zabel S, Reermann J, Fichtner S, Kirchhof C, Quandt E, Wagner B, Schmidt G and Faupel F 2016 Appl. Phys. Lett. 108 222401
[19] Kadota M and Ito S 2012 Jpn. J. Appl. Phys. 51 07GC21
[20] Zhou H, Talbi A, Tiercelin N and Bou Matar O 2014 Appl. Phys. Lett. 104 114101
[21] Elhosni M, Elmazria O, Petit-Watelot S, Bouvot L, Zhgoon S, Talbi A, Hehn M, Aissa K A, Hage-Ali S and Lacour D 2016 Sens. Actuators A: Phys. 240 41
[22] Polewczyk V, Dumesnil K, Lacour D, Moutaouekkil M, Mjahed H, Tiercelin N, Watelot S P, Mishra H, Dusch Y and Hage-Ali S 2017 Phys. Rev. Appl. 8 024001
[23] Wang W, Jia Y, Xue X, Liang Y and Du Z 2018 Smart Mater. Struct. 27 105040
[24] Liu X, Tong B, Ou-Yang J, Yang X, Chen S, Zhang Y and Zhu B 2018 Appl. Phys. Lett. 113 082402
[25] Li M, Matyushov A, Dong C, Chen H, Lin H, Nan T, Qian Z, Rinaldi M, Lin Y and Sun N X 2017 Appl. Phys. Lett. 110 143510
[26] Nan T, Lin H, Gao Y, Matyushov A, Yu G, Chen H, Sun N, Wei S, Wang Z and Li M 2017 Nat. Commun. 8 1
[27] Kittmann A, Durdaut P, Zabel S, Reermann J, Schmalz J, Spetzler B, Meyners D, Sun N X, McCord J and Gerken M 2018 Sci. Rep. 8 1
[28] Li W, Buford B, Jander A and Dhagat P 2014 IEEE Tran. Magn. 50 3100704
[29] Edrington W, Singh U, Dominguez M, Alexander J, Nepal R and Adenwalla S 2018 Appl. Phys. Lett. 112 052402
[30] Wen D, Bai F, Wang Y, Zhong Z and Zhang Z 2013 J. Appl. Phys. 113 17A309
[31] Wang Y, Wang L, Zhang H, Zhong Z, Peng D, Ye F and Bai F 2016 J. Alloys Comp. 667 229
[32] Wiegert R F and Levy M 1988 J. Appl. Phys. 64 5411
[33] Tang J, Ma B, Zhang Z Z and Jin Q Y 2010 Chin. Phys. Lett. 27 077502
[34] Cheng C, Davies R, Sturkcken N, Shepard K and Bailey W 2013 J. Appl. Phys. 113 17A343
[1] Temperature and strain sensitivities of surface and hybrid acoustic wave Brillouin scattering in optical microfibers
Yi Liu(刘毅), Yuanqi Gu(顾源琦), Yu Ning(宁钰), Pengfei Chen(陈鹏飞), Yao Yao(姚尧),Yajun You(游亚军), Wenjun He(贺文君), and Xiujian Chou(丑修建). Chin. Phys. B, 2022, 31(9): 094208.
[2] Fabrication and characterization of one-port surface acoustic wave resonators on semi-insulating GaN substrates
Xue Ji(吉雪), Wen-Xiu Dong(董文秀), Yu-Min Zhang(张育民), Jian-Feng Wang(王建峰), Ke Xu(徐科). Chin. Phys. B, 2019, 28(6): 067701.
[3] Nondestructive determination of film thickness with laser-induced surface acoustic waves
Xiao Xia(肖夏), Kong Tao(孔涛), Qi Hai Yang(戚海洋), Qing Hui Quan(秦慧全). Chin. Phys. B, 2018, 27(9): 096802.
[4] Propagations of Rayleigh and Love waves in ZnO films/glass substrates analyzed by three-dimensional finite element method
Yan Wang(王艳), Ying-Cai Xie(谢英才), Shu-Yi Zhang(张淑仪), Xiao-Dong Lan(兰晓东). Chin. Phys. B, 2017, 26(8): 087703.
[5] Topological charge pump by surface acoustic waves
Yi Zheng(郑一), Shi-Ping Feng(冯世平), Shi-Jie Yang(杨师杰). Chin. Phys. B, 2016, 25(6): 067301.
[6] Transparent ZnO/glass surface acoustic wave based high performance ultraviolet light sensors
Wang Wen-Bo (王文博), Gu Hang (谷航), He Xing-Li (何兴理), Xuan Wei-Peng (轩伟鹏), Chen Jin-Kai (陈金凯), Wang Xiao-Zhi (汪小知), Luo Ji-Kui (骆季奎). Chin. Phys. B, 2015, 24(5): 057701.
[7] Influence of roughness on the detection of mechanical characteristics of low-k film by the surface acoustic waves
Xiao Xia (肖夏), Tao Ye (陶冶), Sun Yuan (孙远). Chin. Phys. B, 2014, 23(10): 106803.
[8] Influence of adhesive layer properties on laser-generated ultrasonic waves in thin bonded plates
Sun Hong-Xiang(孙宏祥), Xu Bai-Qiang(许伯强), Zhang Hua(张华), Gao Qian(高倩), and Zhang Shu-Yi(张淑仪). Chin. Phys. B, 2011, 20(1): 014302.
[9] Investigation of titanium nitride coating by broadband laser ultrasonic spectroscopy
Gao Wei-Min (高伟民), Christ Glorieux, Walter Lauriks, Jan Thoen. Chin. Phys. B, 2002, 11(2): 132-138.
No Suggested Reading articles found!