Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(8): 087507    DOI: 10.1088/1674-1056/acda83
RAPID COMMUNICATION Prev   Next  

Ultrafast antiferromagnet rearrangement in Co/IrMn/CoGd trilayers

Zongxia Guo(郭宗夏)1,2, Gregory Malinowski2, Pierre Vallobra1,3, Yi Peng(彭懿)2, Yong Xu(许涌)1,3, Stéphane Mangin2, Weisheng Zhao(赵巍胜)1,3, Michel Hehn2, and Boyu Zhang(张博宇)1,†
1. Fert Beijing Institute, School of Integrated Science and Engineering, Beihang University, Beijing 100191, China;
2. Universit éde Lorraine, CNRS, IJL, Nancy, 54011 France;
3. Hefei Innovation Research Institute, Beihang University, Hefei 230012, China
Abstract  Antiferromagnets offer great potential for high-speed data processing applications, as they can expend spintronic devices from a static storage and gigahertz frequency range to the terahertz range. However, their zero net magnetization makes them difficult to manipulate and detect. In recent years, there has been a lot of attention given to the ultrafast manipulation of magnetic order using ultra-short single laser pulses, but it remains unknown whether a similar scenario can be observed in antiferromagnets. In this work, we demonstrate the manipulation of antiferromagnets with a single femtosecond laser pulse in perpendicular exchange-biased Co/IrMn/CoGd trilayers. We study the dual exchange bias interlayer interaction in quasi-static conditions and competition in ultrafast antiferromagnet rearrangement. Our results show that, compared to conventional ferromagnetic/antiferromagnetic systems, the IrMn antiferromagnet can be ultrafast and efficiently manipulated by the coupled CoGd ferrimagnetic layer, which paves the way for potential energy-efficient spintronic devices.
Keywords:  antiferromagnet      ferrimagnet      exchange bias      all-optical switching  
Received:  23 March 2023      Revised:  29 May 2023      Accepted manuscript online:  01 June 2023
PACS:  75.47.-m (Magnetotransport phenomena; materials for magnetotransport)  
  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
Fund: The authors gratefully acknowledge the National Key Research and Development Program of China (Grant No.2022YFB4400200), the National Natural Science Foundation of China (Grant Nos.12104030, 12104031, and 61627813), the Program of Introducing Talents of Discipline to Universities (Grant No.B16001), the Beijing Municipal Science and Technology Project (Grant No.Z201100004220002), China Postdoctoral Science Foundation (Grant No.2022M710320), and China Scholarship Council. This work is also supported by the ANR-15-CE24-0009 UMAMI and the ANR-20-CE09-0013, by the Institute Carnot ICEEL for the project "Optic-switch" and Matelas, by the Région Grand Est, by the Metropole Grand Nancy, by the impact project LUE-N4S, part of the French PIA project "Lorraine Université d'Excellence", reference ANR-15-IDEX-04-LUE, and by the "FEDERFSE Lorraine et Massif Vosges 2014-2020", a European Union Program.
Corresponding Authors:  Boyu Zhang     E-mail:  boyu.zhang@buaa.edu.cn

Cite this article: 

Zongxia Guo(郭宗夏), Gregory Malinowski, Pierre Vallobra, Yi Peng(彭懿), Yong Xu(许涌), Stéphane Mangin, Weisheng Zhao(赵巍胜), Michel Hehn, and Boyu Zhang(张博宇) Ultrafast antiferromagnet rearrangement in Co/IrMn/CoGd trilayers 2023 Chin. Phys. B 32 087507

[1] Jungwirth T, Marti X, Wadley P and Wunderlich J 2016 Nat. Nanotechnol. 11 231
[2] Xiong D, Jiang Y, Shi K, Du A, Yao Y, Guo Z, Zhu D, Cao K, Peng S, Cai W, Zhu D and Zhao W 2022 Fundamental Research 2 522
[3] Meiklejohn W H and Bean C P 1957 Phys. Rev. 105 904
[4] Ohldag H, Scholl A, Nolting F, Arenholz E, Maat S, Young A T, Carey M and Stöhr J 2003 Phys. Rev. Lett. 91 017203
[5] Ali M, Marrows C H, Al-Jawad M, Hickey B J, Misra A, Nowak U and Usadel K D 2003 Phys. Rev. B 68 214420
[6] Xu X Y, Wang M H and Hu J G 2008 Chin. Phys. B 17 1443
[7] Qi X J, Yang N N, Duan X X and Li X Z 2021 Chin. Phys. B 30 107501
[8] Chen Y T 2008 Nanoscale Research Letters 4 90
[9] Morales R, Li Z P, Olamit J, Liu K, Alameda J M and Schuller I K 2009 Phys. Rev. Lett. 102 097201
[10] Xu Y, Ma Q, Cai J W and Sun L 2011 Phys. Rev. B 84 054453
[11] Zhan X Z, Li G, Cai J W, Zhu T, Cooper J F K, Kinane C J and Langridge S 2019 Scientific Reports 9 6708
[12] Nam D N H, Chen W, West K G, Kirkwood D M, Lu J and Wolf S A 2008 Appl. Phys. Lett. 93 152504
[13] Freitas P P, Ferreira R and Cardoso S 2016 Proc. IEEE 104 1894
[14] Guo Z, Yin J, Bai Y, Zhu D, Shi K, Wang G, Cao K and Zhao W 2021 Proc. IEEE 109 1398
[15] Sharma A, Hoffmann M A, Matthes P, Busse S, Selyshchev O, Mack P, Exner H, Horn A, Schulz S E, Zahn D R T and Salvan G 2019 J. Mag. Magn. Mater. 489 165390
[16] Mangin S, Gottwald M, Lambert C H, Steil D, Uhlíř V, Pang L, Hehn M, Alebrand S, Cinchetti M, Malinowski G, Fainman Y, Aeschlimann M and Fullerton E E 2014 Nat. Mater. 13 286
[17] Lambert C H, Mangin S, Varaprasad B S D Ch S, Takahashi Y K, Hehn M, Cinchetti M, Malinowski G, Hono K, Fainman Y, Aeschlimann M and Fullerton E E 2014 Science 345 1337
[18] Wang L, Cheng H, Li P, van Hees Y L W, Liu Y, Cao K, Lavrijsen R, Lin X, Koopmans B and Zhao W 2022 Proc. Natl. Acad. Sci. USA 119 2211953
[19] Vallobra P, Fache T, Xu Y, Zhang L, Malinowski G, Hehn M, Rojas-Sánchez J C, Fullerton E E and Mangin S 2017 Phys. Rev. B 96 144403
[20] Radu I, Vahaplar K, Stamm C, Kachel T, Pontius N, Dürr H A, Ostler T A, Barker J, Evans R F L, Chantrell R W, Tsukamoto A, Itoh A, Kirilyuk A, Rasing Th and Kimel A V 2011 Nature 472 205
[21] Guo Z, Wang J, Malinowski G, Zhang B, Zhang W, Wang H, Liu C, Peng Y, Vallobra P, Xu Y, Jenkins S, Chantrell R W, Evans R F L, Mangin S, Zhao W and Hehn M 2023 arXiv:2302.04510 [cond-mat]
[22] Malinowski G, Hehn M and Panissod P 2006 J. Phys.: Condens. Matter 18 3385
[23] Moritz J, Vinai G and Dieny B 2012 IEEE Magnetics Letters 3 4000204
[24] Moritz J, Bacher P, Auffret S and Dieny B 2011 J. Magn. Magn. Mater. 323 2391
[25] Castro I L, Nascimento V P, Passamani E C, Takeuchi A Y, Larica C, Tafur M and Pelegrini F 2013 J. Appl. Phys. 113 203903
[26] Dalla Longa F, Kohlhepp J T, de Jonge W J M and Koopmans B 2010 Phys. Rev. B 81 094435
[27] Kumberg I, Golias E, Pontius N, Hosseinifar R, Frischmuth K, Gelen I, Shinwari T, Thakur S, Schüβler-Langeheine C, Oppeneer P M and Kuch W 2020 Phys. Rev. B 102 214418
[1] Out-of-plane weak ferromagnetism at room temperaturein lattice-distortion non-collinear antiferromagnet of single-crystal Mn3Sn
Bo-Xi Zhang(张博熙), Ping Song(宋平), Shan-Shan Deng(邓珊珊), Li Lou(娄理), and Sen Yao(姚森). Chin. Phys. B, 2023, 32(8): 087502.
[2] Magnetic and electronic properties of bulk and two-dimensional FeBi2Te4: A first-principles study
Qianqian Wang(王倩倩), Jianzhou Zhao(赵建洲), Weikang Wu(吴维康), Yinning Zhou(周胤宁), Qile Li, Mark T. Edmonds, and Shengyuan A. Yang(杨声远). Chin. Phys. B, 2023, 32(8): 087506.
[3] Magneto-optical Kerr and Faraday effects in bilayer antiferromagnetic insulators
Wan-Qing Zhu(朱婉情) and Wen-Yu Shan(单文语). Chin. Phys. B, 2023, 32(8): 087802.
[4] Multiferroic monolayers VOX (X = Cl, Br, I): Tunable ferromagnetism via charge doping and ferroelastic switching
Hong-Chao Yang(杨洪超), Peng-Cheng Liu(刘鹏程), Liu-Yu Mu(穆鎏羽), Ying-De Li(李英德), Kai Han(韩锴), and Xiao-Le Qiu(邱潇乐). Chin. Phys. B, 2023, 32(6): 067701.
[5] Topological magnetotransport and electrical switching of sputtered antiferromagnetic Ir20Mn80
Danrong Xiong(熊丹荣), Yuhao Jiang(蒋宇昊), Daoqian Zhu(朱道乾), Ao Du(杜奥), Zongxia Guo(郭宗夏), Shiyang Lu(卢世阳), Chunxu Wang(王春旭), Qingtao Xia(夏清涛), Dapeng Zhu(朱大鹏), and Weisheng Zhao(赵巍胜). Chin. Phys. B, 2023, 32(5): 057501.
[6] A spin-based magnetic scanning microscope for in-situ strain tuning of soft matter
Zhe Ding(丁哲), Yumeng Sun(孙豫蒙), Mengqi Wang(王孟祺), Pei Yu(余佩), Ningchong Zheng(郑宁冲), Yipeng Zang(臧一鹏), Pengfei Wang(王鹏飞), Ya Wang(王亚), Yuefeng Nie(聂越峰), Fazhan Shi(石发展), and Jiangfeng Du(杜江峰). Chin. Phys. B, 2023, 32(5): 057504.
[7] Strong spin frustration and magnetism in kagomé antiferromagnets LnCu3(OH)6Br3 (Ln=Nd, Sm, and Eu)
Jin-Qun Zhong(钟金群), Zhen-Wei Yu(余振伟), Xiao-Yu Yue(岳小宇), Yi-Yan Wang(王义炎), Hui Liang(梁慧), Yan Sun(孙燕), Dan-Dan Wu(吴丹丹), Zong-Ling Ding(丁宗玲), Jin Sun(孙进), Xue-Feng Sun(孙学峰), and Qiu-Ju Li(李秋菊). Chin. Phys. B, 2023, 32(4): 047505.
[8] Skyrmion-based logic gates controlled by electric currents in synthetic antiferromagnet
Linlin Li(李林霖), Jia Luo(罗佳), Jing Xia(夏静), Yan Zhou(周艳), Xiaoxi Liu(刘小晰), and Guoping Zhao(赵国平). Chin. Phys. B, 2023, 32(1): 017506.
[9] Half-metallicity induced by out-of-plane electric field on phosphorene nanoribbons
Xiao-Fang Ouyang(欧阳小芳) and Lu Wang(王路). Chin. Phys. B, 2022, 31(7): 077304.
[10] Large inverse and normal magnetocaloric effects in HoBi compound with nonhysteretic first-order phase transition
Yan Zhang(张艳), You-Guo Shi(石友国), Li-Chen Wang(王利晨), Xin-Qi Zheng(郑新奇), Jun Liu(刘俊), Ya-Xu Jin(金亚旭), Ke-Wei Zhang(张克维), Hong-Xia Liu(刘虹霞), Shuo-Tong Zong(宗朔通), Zhi-Gang Sun(孙志刚), Ji-Fan Hu(胡季帆), Tong-Yun Tong(赵同云), and Bao-Gen Shen(沈保根). Chin. Phys. B, 2022, 31(7): 077501.
[11] Magnetic and magnetocaloric effect in a stuffed honeycomb polycrystalline antiferromagnet GdInO3
Yao-Dong Wu(吴耀东), Wei-Wei Duan(段薇薇), Qiu-Yue Li(李秋月), Yong-Liang Qin(秦永亮),Zhen-Fa Zi(訾振发), and Jin Tang(汤进). Chin. Phys. B, 2022, 31(6): 067501.
[12] Dynamical signatures of the one-dimensional deconfined quantum critical point
Ning Xi(西宁) and Rong Yu(俞榕). Chin. Phys. B, 2022, 31(5): 057501.
[13] Spin current transmission in Co1-xTbx films
Li Wang(王力), Yangtao Su(苏仰涛), Yang Meng(孟洋), Haibin Shi(石海滨), Xinyu Cao(曹昕宇), and Hongwu Zhao(赵宏武). Chin. Phys. B, 2022, 31(2): 027504.
[14] Perpendicular magnetization and exchange bias in epitaxial NiO/[Ni/Pt]2 multilayers
Lin-Ao Huang(黄林傲), Mei-Yu Wang(王梅雨), Peng Wang(王鹏), Yuan Yuan(袁源), Ruo-Bai Liu(刘若柏), Tian-Yu Liu(刘天宇), Yu Lu(卢羽), Jia-Rui Chen(陈家瑞), Lu-Jun Wei(魏陆军), Wei Zhang(张维), Biao You(游彪), Qing-Yu Xu(徐庆宇), and Jun Du(杜军). Chin. Phys. B, 2022, 31(2): 027506.
[15] Gilbert damping in the layered antiferromagnet CrCl3
Xinlin Mi(米锌林), Ledong Wang(王乐栋), Qi Zhang(张琪), Yitong Sun(孙艺彤), Yufeng Tian(田玉峰), Shishen Yan(颜世申), and Lihui Bai(柏利慧). Chin. Phys. B, 2022, 31(2): 027505.
No Suggested Reading articles found!