Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(10): 107501    DOI: 10.1088/1674-1056/abec34
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Influence of temperature on thermal relaxation of exchange bias field in CoFe/Cu/CoFe/IrMn spin valve

Xian-Jin Qi(祁先进)1,2,†, Ni-Na Yang(杨妮娜)1,2, Xiao-Xu Duan(段孝旭)1,2, and Xue-Zhu Li(李雪竹)1,2
1 Engineering Research Center of Metallurgical Energy Conservation and Emission Reduction, Ministry of Education, Kunming University of Science and Technology, Kunming 650093, China;
2 State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
Abstract  A multilayered spin valve film with a structure of Ta (5 nm)/Co75Fe25(5 nm)/Cu(2.5 nm)/Co75Fe25(5 nm)/Ir20Mn80 (12 nm)/Ta(8 nm) is prepared by the high-vacuum direct current (DC) magnetron sputtering. The effect of temperature on the spin valve structure and the magnetic properties are studied by x-ray diffraction (XRD), atomic force microscopy (AFM), and vibrating sample magnetometry. The effect of temperature on the exchange bias field thermomagnetic properties of multilayered spin valve is studied by the residence time of samples in a reverse saturation field. The results show that as the temperature increases, the IrMn (111) texture weakens, surface/interface roughness increases, and the exchange bias field decreases. Below 200 ℃, the exchange bias field decreases with the residence time increasing, and at the beginning of the negative saturation field, the exchange bias field Hex decreases first quickly and then slowly gradually. When the temperature is greater than 200 ℃, the exchange bias field is unchanged with the residence time increasing.
Keywords:  exchange bias field      spin valves      temperature      thermal relaxation  
Received:  10 January 2021      Revised:  24 February 2021      Accepted manuscript online:  05 March 2021
PACS:  75.60.Jk (Magnetization reversal mechanisms)  
  75.60.Nt (Magnetic annealing and temperature-hysteresis effects)  
  76.60.Es (Relaxation effects)  
Fund: Project supported by the Yunnan Provincial Ten Thousand Talents Plan Young Talents Training Fund, China (Grant No. KKRD201952029), the Applied Basic Research Program of Yunnan Province, China (Grant No. 2011FB037), and the School Talent Cultivation Foundation, China (Grant No. KKSY201252017).
Corresponding Authors:  Xian-Jin Qi     E-mail:  qixianjin79@163.com

Cite this article: 

Xian-Jin Qi(祁先进), Ni-Na Yang(杨妮娜), Xiao-Xu Duan(段孝旭), and Xue-Zhu Li(李雪竹) Influence of temperature on thermal relaxation of exchange bias field in CoFe/Cu/CoFe/IrMn spin valve 2021 Chin. Phys. B 30 107501

[1] Grunberg P, Schreiber R, Pang Y, Brodsky M B and Sowers H 1986 Phys. Rev. Lett. 57 2442
[2] Baibich M N, Broto J M, Fert A, Nguyen Van Dau, Petroff F, Eitenne P, Creuzet G, Friederich A and Chazelas J 1988 Phys. Rev. Lett. 61 2472
[3] Nakatani T, Sasaki TT, Li S, Sakuraba Y, Furubayashi T and Hono K 2018 J. Appl. Phys. 124 223904
[4] Deak J G, Zhou Z M and Shen W F 2017 AIP Adv. 7 056676
[5] Khunkitti P, Siritaratiwat A, Kaewrawang A, Mewes T, Mewes C K A and Kruesubthaworn A 2016 J. Magn. Magn. Mater. 412 42
[6] Tomczak Y, Swerts J, Mertens S, Lin T, Couet S, Liu E, Sankaran K, Pourtois G, Kim W and Souriau L 2016 Appl. Phys. Lett. 108 042402
[7] Li Y Q, Kan H J, Miao Y Y, Yang L, Qiu S, Zhang G P, Ren J F, Wang C K and Hu G C 2020 Chin. Phys. B 29 017303
[8] Pradhan S K, Dalal B, Kumar R, Majumdar S and De K S 2020 J Phys.: Condens. Mat. 32 305803
[9] Sheng R Q, Sun L, Deng X Q, Fan Z Q and Zhang Z H 2019 Solid State Commun. 297 27
[10] Wang L, Chen, L C, Liu W Y, Han S, Wang W W, Lu Z J and Chen S S 2018 Chin. Phys. B 27 097202
[11] Iqbal M Z, Hussain G, Siddique S, Hussain T and Iqbal M J 2018 Solid State Commun. 272 33
[12] Chai C L, Teng J, Yu G H, Zhu F W, Lai W Y and Xiao J M 2002 Acta Phys. Sin. 51 1846 (in Chinese)
[13] Qi X J, Hao F Y, Li X Z, Li Y K and Lu Z X 2019 AIP Adv. 9 105008
[14] Rickart M, Guedes A, Franco N, Barradas N P, Diaz P, MacKenzie M, Chapman J N and Freitas P P 2005 J. Phys. D: Appl. Phys. 38 2151
[15] Yang T and Lai W Y 1999 J. Phys. D: Appl. Phys. 32 2856
[16] Park C M, Min K I and Shin K H 1996 J. Appl. Phys. 79 6228
[17] Chen K C, Yang C T, Wu Y H, Huang C H, Wu K M, Wu J C, Young S L and Horng L 2007 J. Appl. Phys. 4 4372
[18] Nascimento V P, Passamani E C, Biondo A, Nunes V B and Saitovitch E B 2007 Appl. Surf. Sci. 253 6248
[19] Nascimento V P, Passamani E C, Alvarenga A D, Pelegrini F, Biondo A and Saitovitch E B 2008 J. Magn. Magn. Mater. 320 E272
[20] Park C M, Min K I and Shin K H 1996 J. Appl. Phys. 79 6228
[21] Shen J X and Kief M T 1996 J. Appl. Phys. 79 5008
[22] van Driel J, de Boer F R, Lenssen, K M H and Coehoorn R 2000 J. Appl. Phys. 88 975
[23] Tanoue S, Tabuchi K and Sawasaki T 2001 J. Magn. Magn. Mater. 233 164
[24] Stamps R L 2000 J. Phys. D: Appl. Phys. 33 R247
[25] Malozemoff A P 1988 J. Appl. Phys. 63 3874
[26] Khapikov A F, Harrell J W, Fujiwara H and Hou C 2000 J. Appl. Phys. 87 4954
[27] Mao S, Amin N and Murdock E.D 1998 J. Appl. Phys. 83 6807
[28] Zeltser A M and Pentek K 1998 IEEE Trans. Magn. 34 1417
[29] Chen Y T, Jen S U, Yao Y D, Wu J M, Hwang G H, Tsai T L, Chang Y C and Sun A C 2006 J. Magn. Magn. Mater. 304 E71
[30] Pakala M, Huai Y and Anderson G 2000 IEEE Trans. Magn. 36 2620
[31] Enders A, Peterka D and Repetto D 2003 Phys. Rev. Lett. 90 217203
[32] Lamy Y, Viala b and Prejbeanu I L 2005 IEEE Trans. Magn. 41 3517
[33] Wang Y G and Petford-Long A K 2002 J. Appl. Phys. 92 6699
[34] Hughes T, Laidler H and O'Grady K 2001 J. Appl. Phys. 89 5585
[35] Portier X, Petford-Long A K, de Morais A, Owen N W, Laidler H and O'Grady K 2000 J. Appl. Phys. 87 6412
[36] Nishioka K 1999 J. Appl. Phys. 86 6305
[37] Xi H W, Franzen S, Mao S and White R M 2007 Phys. Rev. B 75 014434
[38] Czapkiewicz M, Stobiecki T and van Dijken S 2008 Phys. Rev. B 77 024416
[1] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[2] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[3] In situ temperature measurement of vapor based on atomic speed selection
Lu Yu(于露), Li Cao(曹俐), Ziqian Yue(岳子骞), Lin Li(李林), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2023, 32(2): 020602.
[4] Giant low-field cryogenic magnetocaloric effect in polycrystalline LiErF4 compound
Zhaojun Mo(莫兆军), Jianjian Gong(巩建建), Huicai Xie(谢慧财), Lei Zhang(张磊), Qi Fu(付琪), Xinqiang Gao(高新强), Zhenxing Li(李振兴), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027503.
[5] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[6] Heat transport properties within living biological tissues with temperature-dependent thermal properties
Ying-Ze Wang(王颖泽), Xiao-Yu Lu(陆晓宇), and Dong Liu(刘栋). Chin. Phys. B, 2023, 32(1): 014401.
[7] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[8] Numerical simulation of the thermal non-equilibrium flow-field characteristics of a hypersonic Apollo-like vehicle
Minghao Yu(喻明浩), Zeyang Qiu(邱泽洋), Bo Lv(吕博), and Zhe Wang(王哲). Chin. Phys. B, 2022, 31(9): 094702.
[9] Finite superconducting square wire-network based on two-dimensional crystalline Mo2C
Zhen Liu(刘震), Zi-Xuan Yang(杨子萱), Chuan Xu(徐川), Jia-Ji Zhao(赵嘉佶), Lu-Junyu Wang(王陆君瑜), Yun-Qi Fu(富云齐), Xue-Lei Liang(梁学磊), Hui-Ming Cheng(成会明), Wen-Cai Ren(任文才), Xiao-Song Wu(吴孝松), and Ning Kang(康宁). Chin. Phys. B, 2022, 31(9): 097404.
[10] Synthesis of hexagonal boron nitride films by dual temperature zone low-pressure chemical vapor deposition
Zhi-Fu Zhu(朱志甫), Shao-Tang Wang(王少堂), Ji-Jun Zou(邹继军), He Huang(黄河), Zhi-Jia Sun(孙志嘉), Qing-Lei Xiu(修青磊), Zhong-Ming Zhang(张忠铭), Xiu-Ping Yue(岳秀萍), Yang Zhang(张洋), Jin-Hui Qu(瞿金辉), and Yong Gan(甘勇). Chin. Phys. B, 2022, 31(8): 086103.
[11] Optical fiber FBG linear sensing systems for the on-line monitoring of airborne high temperature air duct leakage
Qinyu Wang(王沁宇), Xinglin Tong(童杏林), Cui Zhang(张翠), Chengwei Deng(邓承伟), Siyu Xu(许思宇), and Jingchuang Wei(魏敬闯). Chin. Phys. B, 2022, 31(8): 084204.
[12] A 658-W VCSEL-pumped rod laser module with 52.6% optical efficiency
Xue-Peng Li(李雪鹏), Jing Yang(杨晶), Meng-Shuo Zhang(张梦硕), Tian-Li Yang(杨天利), Xiao-Jun Wang(王小军), and Qin-Jun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 084207.
[13] Core structure and Peierls stress of the 90° dislocation and the 60° dislocation in aluminum investigated by the fully discrete Peierls model
Hao Xiang(向浩), Rui Wang(王锐), Feng-Lin Deng(邓凤麟), and Shao-Feng Wang(王少峰). Chin. Phys. B, 2022, 31(8): 086104.
[14] Magnetic properties of a mixed spin-3/2 and spin-2 Ising octahedral chain
Xiao-Chen Na(那小晨), Nan Si(司楠), Feng-Ge Zhang(张凤阁), and Wei Jiang(姜伟). Chin. Phys. B, 2022, 31(8): 087502.
[15] A radiation-temperature coupling model of the optical fiber attenuation spectrum in the Ge/P co-doped fiber
Yong Li(李勇), Haoshi Zhang(张浩石), Xiaowei Wang(王晓伟), and Jing Jin(金靖). Chin. Phys. B, 2022, 31(7): 074211.
No Suggested Reading articles found!