CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Influence of temperature on thermal relaxation of exchange bias field in CoFe/Cu/CoFe/IrMn spin valve |
Xian-Jin Qi(祁先进)1,2,†, Ni-Na Yang(杨妮娜)1,2, Xiao-Xu Duan(段孝旭)1,2, and Xue-Zhu Li(李雪竹)1,2 |
1 Engineering Research Center of Metallurgical Energy Conservation and Emission Reduction, Ministry of Education, Kunming University of Science and Technology, Kunming 650093, China; 2 State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China |
|
|
Abstract A multilayered spin valve film with a structure of Ta (5 nm)/Co75Fe25(5 nm)/Cu(2.5 nm)/Co75Fe25(5 nm)/Ir20Mn80 (12 nm)/Ta(8 nm) is prepared by the high-vacuum direct current (DC) magnetron sputtering. The effect of temperature on the spin valve structure and the magnetic properties are studied by x-ray diffraction (XRD), atomic force microscopy (AFM), and vibrating sample magnetometry. The effect of temperature on the exchange bias field thermomagnetic properties of multilayered spin valve is studied by the residence time of samples in a reverse saturation field. The results show that as the temperature increases, the IrMn (111) texture weakens, surface/interface roughness increases, and the exchange bias field decreases. Below 200 ℃, the exchange bias field decreases with the residence time increasing, and at the beginning of the negative saturation field, the exchange bias field Hex decreases first quickly and then slowly gradually. When the temperature is greater than 200 ℃, the exchange bias field is unchanged with the residence time increasing.
|
Received: 10 January 2021
Revised: 24 February 2021
Accepted manuscript online: 05 March 2021
|
PACS:
|
75.60.Jk
|
(Magnetization reversal mechanisms)
|
|
75.60.Nt
|
(Magnetic annealing and temperature-hysteresis effects)
|
|
76.60.Es
|
(Relaxation effects)
|
|
Fund: Project supported by the Yunnan Provincial Ten Thousand Talents Plan Young Talents Training Fund, China (Grant No. KKRD201952029), the Applied Basic Research Program of Yunnan Province, China (Grant No. 2011FB037), and the School Talent Cultivation Foundation, China (Grant No. KKSY201252017). |
Corresponding Authors:
Xian-Jin Qi
E-mail: qixianjin79@163.com
|
Cite this article:
Xian-Jin Qi(祁先进), Ni-Na Yang(杨妮娜), Xiao-Xu Duan(段孝旭), and Xue-Zhu Li(李雪竹) Influence of temperature on thermal relaxation of exchange bias field in CoFe/Cu/CoFe/IrMn spin valve 2021 Chin. Phys. B 30 107501
|
[1] Grunberg P, Schreiber R, Pang Y, Brodsky M B and Sowers H 1986 Phys. Rev. Lett. 57 2442 [2] Baibich M N, Broto J M, Fert A, Nguyen Van Dau, Petroff F, Eitenne P, Creuzet G, Friederich A and Chazelas J 1988 Phys. Rev. Lett. 61 2472 [3] Nakatani T, Sasaki TT, Li S, Sakuraba Y, Furubayashi T and Hono K 2018 J. Appl. Phys. 124 223904 [4] Deak J G, Zhou Z M and Shen W F 2017 AIP Adv. 7 056676 [5] Khunkitti P, Siritaratiwat A, Kaewrawang A, Mewes T, Mewes C K A and Kruesubthaworn A 2016 J. Magn. Magn. Mater. 412 42 [6] Tomczak Y, Swerts J, Mertens S, Lin T, Couet S, Liu E, Sankaran K, Pourtois G, Kim W and Souriau L 2016 Appl. Phys. Lett. 108 042402 [7] Li Y Q, Kan H J, Miao Y Y, Yang L, Qiu S, Zhang G P, Ren J F, Wang C K and Hu G C 2020 Chin. Phys. B 29 017303 [8] Pradhan S K, Dalal B, Kumar R, Majumdar S and De K S 2020 J Phys.: Condens. Mat. 32 305803 [9] Sheng R Q, Sun L, Deng X Q, Fan Z Q and Zhang Z H 2019 Solid State Commun. 297 27 [10] Wang L, Chen, L C, Liu W Y, Han S, Wang W W, Lu Z J and Chen S S 2018 Chin. Phys. B 27 097202 [11] Iqbal M Z, Hussain G, Siddique S, Hussain T and Iqbal M J 2018 Solid State Commun. 272 33 [12] Chai C L, Teng J, Yu G H, Zhu F W, Lai W Y and Xiao J M 2002 Acta Phys. Sin. 51 1846 (in Chinese) [13] Qi X J, Hao F Y, Li X Z, Li Y K and Lu Z X 2019 AIP Adv. 9 105008 [14] Rickart M, Guedes A, Franco N, Barradas N P, Diaz P, MacKenzie M, Chapman J N and Freitas P P 2005 J. Phys. D: Appl. Phys. 38 2151 [15] Yang T and Lai W Y 1999 J. Phys. D: Appl. Phys. 32 2856 [16] Park C M, Min K I and Shin K H 1996 J. Appl. Phys. 79 6228 [17] Chen K C, Yang C T, Wu Y H, Huang C H, Wu K M, Wu J C, Young S L and Horng L 2007 J. Appl. Phys. 4 4372 [18] Nascimento V P, Passamani E C, Biondo A, Nunes V B and Saitovitch E B 2007 Appl. Surf. Sci. 253 6248 [19] Nascimento V P, Passamani E C, Alvarenga A D, Pelegrini F, Biondo A and Saitovitch E B 2008 J. Magn. Magn. Mater. 320 E272 [20] Park C M, Min K I and Shin K H 1996 J. Appl. Phys. 79 6228 [21] Shen J X and Kief M T 1996 J. Appl. Phys. 79 5008 [22] van Driel J, de Boer F R, Lenssen, K M H and Coehoorn R 2000 J. Appl. Phys. 88 975 [23] Tanoue S, Tabuchi K and Sawasaki T 2001 J. Magn. Magn. Mater. 233 164 [24] Stamps R L 2000 J. Phys. D: Appl. Phys. 33 R247 [25] Malozemoff A P 1988 J. Appl. Phys. 63 3874 [26] Khapikov A F, Harrell J W, Fujiwara H and Hou C 2000 J. Appl. Phys. 87 4954 [27] Mao S, Amin N and Murdock E.D 1998 J. Appl. Phys. 83 6807 [28] Zeltser A M and Pentek K 1998 IEEE Trans. Magn. 34 1417 [29] Chen Y T, Jen S U, Yao Y D, Wu J M, Hwang G H, Tsai T L, Chang Y C and Sun A C 2006 J. Magn. Magn. Mater. 304 E71 [30] Pakala M, Huai Y and Anderson G 2000 IEEE Trans. Magn. 36 2620 [31] Enders A, Peterka D and Repetto D 2003 Phys. Rev. Lett. 90 217203 [32] Lamy Y, Viala b and Prejbeanu I L 2005 IEEE Trans. Magn. 41 3517 [33] Wang Y G and Petford-Long A K 2002 J. Appl. Phys. 92 6699 [34] Hughes T, Laidler H and O'Grady K 2001 J. Appl. Phys. 89 5585 [35] Portier X, Petford-Long A K, de Morais A, Owen N W, Laidler H and O'Grady K 2000 J. Appl. Phys. 87 6412 [36] Nishioka K 1999 J. Appl. Phys. 86 6305 [37] Xi H W, Franzen S, Mao S and White R M 2007 Phys. Rev. B 75 014434 [38] Czapkiewicz M, Stobiecki T and van Dijken S 2008 Phys. Rev. B 77 024416 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|