CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Stacking-dependent exchange bias in two-dimensional ferromagnetic/antiferromagnetic bilayers |
Huiping Li(李慧平)1,2, Shuaiwei Pan(潘帅唯)2, Zhe Wang(王喆)3, Bin Xiang(向斌)4, and Wenguang Zhu(朱文光)1,2,† |
1 International Center for Quantum Design of Functional Materials(ICQD), Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China; 2 Department of Physics, University of Science and Technology of China, Hefei 230026, China; 3 Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China; 4 Department of Materials Science & Engineering, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract A clear microscopic understanding of exchange bias is crucial for its application in magnetic recording, and further progress in this area is desired. Based on the results of our first-principles calculations and Monte Carlo simulations, we present a theoretical proposal for a stacking-dependent exchange bias in two-dimensional compensated van der Waals ferromagnetic/antiferromagnetic bilayer heterostructures. The exchange bias effect emerges in stacking registries that accommodate inhomogeneous interlayer magnetic interactions between the ferromagnetic layer and different spin sublattices of the antiferromagnetic layer. Moreover, the on/off switching and polarity reversal of the exchange bias can be achieved by interlayer sliding, and the strength can be modulated using an external electric field. Our findings push the limits of exchange bias systems to extreme bilayer thickness in two-dimensional van der Waals heterostructures, potentially stimulating new experimental investigations and applications.
|
Received: 01 September 2023
Revised: 18 October 2023
Accepted manuscript online: 20 October 2023
|
PACS:
|
75.70.Cn
|
(Magnetic properties of interfaces (multilayers, superlattices, heterostructures))
|
|
75.75.-c
|
(Magnetic properties of nanostructures)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2019YFA0210004), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB30000000), and the Fundamental Research Funds for the Central Universities (Grant No. WK3510000013). Computational support was provided by the National Supercomputing Center in Tianjin. |
Corresponding Authors:
Wenguang Zhu
E-mail: wgzhu@ustc.edu.cn
|
Cite this article:
Huiping Li(李慧平), Shuaiwei Pan(潘帅唯), Zhe Wang(王喆), Bin Xiang(向斌), and Wenguang Zhu(朱文光) Stacking-dependent exchange bias in two-dimensional ferromagnetic/antiferromagnetic bilayers 2024 Chin. Phys. B 33 017504
|
[1] Nogués J and Schuller I K 1999 J. Magn. Magn. Mater. 192 203 [2] Berkowitz A E and Takano K 1999 J. Magn. Magn. Mater. 200 552 [3] Meiklejohn W H and Bean C P 1956 Phys. Rev. 102 1413 [4] Meiklejohn W H and Bean C P 1957 Phys. Rev. 105 904 [5] Nogués J, Sort J, Langlais V, Skumryev V, Suriñach S, Muñoz J S and Baró M D 2005 Phys. Rep. 422 65 [6] Manna P K and Yusuf S M 2014 Phys. Rep. 535 61 [7] Zhang W and Krishnan K M 2016 Mater. Sci. Eng. R Rep. 105 1 [8] Kappenberger P, Martin S, Pellmont Y, Hug H J, Kortright J B, Hellwig O and Fullerton E E 2003 Phys. Rev. Lett. 91 267202 [9] Schuller I K, Morales R, Batlle X, Nowak U and Güntherodt G 2016 J. Magn. Magn. Mater. 416 2 [10] Miltényi P, Gierlings M, Keller J, Beschoten B, Güntherodt G, Nowak U and Usadel K D 2000 Phys. Rev. Lett. 84 4224 [11] Keller J, Miltényi P, Beschoten B, Güntherodt G, Nowak U and Usadel K D 2002 Phys. Rev. B 66 014431 [12] Schulthess T C and Butler W H 1999 J. Appl. Phys. 85 5510 [13] Brück S, Schütz G, Goering E, Ji X and Krishnan K M 2008 Phys. Rev. Lett. 101 126402 [14] Kumar D, Singh S and Gupta A 2016 J. Appl. Phys. 120 085307 [15] Maat S, Takano K, Parkin S S and Fullerton E E 2001 Phys. Rev. Lett. 87 087202 [16] Gruyters M 2005 Phys. Rev. Lett. 95 077204 [17] Ali M, Adie P, Marrows C H, Greig D, Hickey B J and Stamps R L 2007 Nat. Mater. 6 70 [18] Maniv E, Murphy R A, Haley S C, Doyle S, John C, Maniv A, Ramakrishna S K, Tang Y-L, Ercius P, Ramesh R, Reyes A P, Long J R and Analytis J G 2021 Nat. Phys. 17 525 [19] Koon N C 1997 Phys. Rev. Lett. 78 4865 [20] Lederman D, Ramírez R and Kiwi M 2004 Phys. Rev. B 70 184422 [21] Ijiri Y, Schulthess T C, Borchers J A, van der Zaag P J and Erwin R W 2007 Phys. Rev. Lett. 99 147201 [22] Dong S, Yamauchi K, Yunoki S, Yu R, Liang S, Moreo A, Liu J M and Picozzi S and Dagotto E 2009 Phys. Rev. Lett. 103 127201 [23] Yanes R, Jackson J, Udvardi L, Szunyogh L and Nowak U 2013 Phys. Rev. Lett. 111 217202 [24] Phan M H, Kalappattil V, Jimenez V O, Thi Hai Pham Y, Mudiyanselage N W Y A Y, Detellem D, Hung C M, Chanda A and Eggers T 2023 J. Alloys Compd. 937 168375 [25] Gong C and Zhang X 2019 Science 363 eaav4450 [26] Sierra J F, Fabian J, Kawakami R K, Roche S and Valenzuela S O 2021 Nat. Nanotechnol. 16 856 [27] Li Y, Yang B, Xu S, Huang B and Duan W 2022 ACS Appl. Electron. Mater. 4 3278 [28] Choi E M, Sim K I, Burch K S and Lee Y H 2022 Adv. Sci. 9 2200186 [29] Hu G, Zhu Y, Xiang J, Yang T Y, Huang M, Wang Z, Wang Z, Liu P, Zhang Y, Feng C, Hou D, Zhu W, Gu M, Hsu C H, Chuang F C, Lu Y, Xiang B and Chueh Y L 2020 ACS Nano 14 12037 [30] Dai H, Cheng H, Cai M, Hao Q, Xing Y, Chen H, Chen X, Wang X and Han J B 2021 ACS Appl. Mater. Interfaces 13 24314 [31] Huang X, Zhang L, Tong L, Li Z, Peng Z, Lin R, Shi W, Xue K H, Dai H, Cheng H, de Camargo Branco D, Xu J, Han J, Cheng G J, Miao X and Ye L 2023 Nat. Commun. 14 2190 [32] Zheng G, Xie W Q, Albarakati S, Algarni M, Tan C, Wang Y, Peng J, Partridge J, Farrar L, Yi J, Xiong Y, Tian M, Zhao Y J and Wang L 2020 Phys. Rev. Lett. 125 047202 [33] Gweon H K, Lee S Y, Kwon H Y, Jeong J, Chang H J, Kim K W, Qiu Z Q, Ryu H, Jang C and Choi J W 2021 Nano Lett. 21 1672 [34] Ma S, Li G, Li Z, Zhang Y, Lu H, Gao Z, Wu J, Long G and Huang Y 2022 ACS Nano 16 19439 [35] Liu C, Zhang H, Zhang S, Hou D, Liu Y, Wu H, Jiang Z, Wang H, Ma Z, Luo X, Li X, Sun Y, Xu X, Zhang Z and Sheng Z 2023 Adv. Mater. 35 2203411 [36] Ying Z, Chen B, Li C, Wei B, Dai Z, Guo F, Pan D, Zhang H, Wu D, Wang X, Zhang S, Fei F and Song F 2023 Nano Lett. 23 765 [37] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [38] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 [39] Blöchl P E 1994 Phys. Rev. B 50 17953 [40] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [41] Methfessel M and Paxton A T 1989 Phys. Rev. B 40 3616 [42] Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104 [43] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B 57 1505 [44] Liu X, Pyatakov A P and Ren W 2020 Phys. Rev. Lett. 125 247601 [45] Huang C, Du Y, Wu H, Xiang H, Deng K and Kan E 2018 Phys. Rev. Lett. 120 147601 [46] Li X, Cao T, Niu Q, Shi J and Feng J 2013 Proc. Natl. Acad. Sci. USA 110 3738 [47] Henkelman G, Uberuaga B P and Jónsson H 2000 J. Chem. Phys. 113 9901 [48] He X, Helbig N, Verstraete M J and Bousquet E 2021 Comput. Phys. Commun. 264 107938 [49] Liechtenstein A I, Katsnelson M I, Antropov V P and Gubanov V A 1987 J. Magn. Magn. Mater. 67 65 [50] Xiang H, Lee C, Koo H-J, Gong X and Whangbo M H 2013 Dalton Trans. 42 823 [51] Keffer F and Chow H 1973 Phys. Rev. Lett. 31 1061 [52] Long G, Henck H, Gibertini M, Dumcenco D, Wang Z, Taniguchi T, Watanabe K, Giannini E and Morpurgo A F 2020 Nano Lett. 20 2452 [53] Kim M, Kumaravadivel P, Birkbeck J, Kuang W, Xu S G, Hopkinson D G, Knolle J, McClarty P A, Berdyugin A I, Ben Shalom M, Gorbachev R V, Haigh S J, Liu S, Edgar J H, Novoselov K S, Grigorieva I V and Geim A K 2019 Nat. Electron. 2 457 [54] Wang X, Li D, Li Z, Wu C, Che C M, Chen G and Cui X 2021 ACS Nano 15 16236 [55] Vatansever E, Sarikurt S and Evans R F L 2018 Mater. Res. Express 5 046108 [56] Sivadas N, Okamoto S, Xu X, Fennie C J and Xiao D 2018 Nano Lett. 18 7658 [57] Chen W, Sun Z, Wang Z, Gu L, Xu X, Wu S and Gao C 2019 Science 366 983 [58] Ni Z, Haglund A V, Wang H, Xu B, Bernhard C, Mandrus D G, Qian X, Mele E J, Kane C L and Wu L 2021 Nat. Nanotechnol. 16 782 [59] Isaacs E B and Marianetti C A 2016 Phys. Rev. B 94 035120 [60] Fuh H R, Chang C R, Wang Y K, Evans R F, Chantrell R W, Jeng H T 2016 Sci. Rep. 6 32625 [61] Kim H H, Yang B, Li S, Jiang S, Jin C, Tao Z, Nichols G, Sfigakis F, Zhong S, Li C, Tian S, Cory D G, Miao G X, Shan J, Mak K F, Lei H, Sun K, Zhao L and Tsen A W 2019 Proc. Natl. Acad. Sci. USA 116 11131 [62] Lv H, Niu Y, Wu X and Yang J 2021 Nano Lett. 21 7050 [63] Huang C, Feng J, Wu F, Ahmed D, Huang B, Xiang H, Deng K and Kan E 2018 J. Am. Chem. Soc. 140 11519 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|