CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Quantifying plasmon resonance and interband transition contributions in photocatalysis of gold nanoparticle |
Liang Dong(董亮), Chengyun Zhang(张成云), Lei Yan(严蕾)†, Baobao Zhang(张宝宝), Huan Chen(陈环), Xiaohu Mi(弥小虎), Zhengkun Fu(付正坤), Zhenglong Zhang(张正龙)‡, and Hairong Zheng(郑海荣) |
School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China |
|
|
Abstract Localized surface plasmon has been extensively studied and used for the photocatalysis of various chemical reactions. However, the different contributions between plasmon resonance and interband transition in photocatalysis has not been well understood. Here, we study the photothermal and hot electrons effects for crystal transformation by combining controlled experiments with numerical simulations. By photo-excitation of NaYF4:Eu3+@Au composite structure, it is found that the plasmonic catalysis is much superior to that of interband transition in the experiments, owing to the hot electrons generated by plasmon decay more energetic to facilitate the reaction. We emphasize that the energy level of hot electrons plays an essential role for improving the photocatalytic activity. The results provide guidelines for improving the efficiency of plasmonic catalysis in future experimental design.
|
Received: 19 January 2021
Revised: 27 March 2021
Accepted manuscript online: 21 April 2021
|
PACS:
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
31.15.xf
|
(Finite-difference schemes)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2020YFA0211300), the National Natural Science Foundation of China (Grant Nos. 92050112, 12074237, and 12004233), and the Fundamental Research Funds for Central Universities, China (Grant Nos. GK202103010 and GK202103018). |
Corresponding Authors:
Lei Yan, Zhenglong Zhang
E-mail: yanlei@snnu.edu.cn;zlzhang@snnu.edu.cn
|
Cite this article:
Liang Dong(董亮), Chengyun Zhang(张成云), Lei Yan(严蕾), Baobao Zhang(张宝宝), Huan Chen(陈环), Xiaohu Mi(弥小虎), Zhengkun Fu(付正坤), Zhenglong Zhang(张正龙), and Hairong Zheng(郑海荣) Quantifying plasmon resonance and interband transition contributions in photocatalysis of gold nanoparticle 2021 Chin. Phys. B 30 077301
|
[1] Pelton M, Aizpurua J and Bryant G 2008 Laser Photon. Rev. 2 136 [2] Sönnichsen C, Franzl T, Wilk T, von Plessen G, Feldmann J, Wilson O and Mulvaney P 2002 Phys. Rev. Lett. 88 077402 [3] Mascaretti L, Dutta A, Kment Š, Shalaev, V M, Boltasseva A, Zbořil R and Naldoni A 2019 Adv. Mater. 31 1805513 [4] Guselnikova O, Trelin A, Miliutina E, Elashnikov R and Lyutakov O 2020 ACS Appl. Mater. Interfaces 12 28110 [5] Xiao M, Jiang R, Wang F, Fang C, Wang J and Yu J C 2013 J. Mater. Chem. A 1 5790 [6] Tu H, Cheng J, Pan G, Han L, Duan B, Wang H, Chen Q, Xu S, Dai Z and Pan L 2021 Chin. Phys. B 30 027802 [7] Park S, Pelton M, Liu M, Guyot-Sionnest P and Scherer N F 2007 J. Phys. Chem. C 111 116 [8] Kim M, Lee J and Nam J 2019 Adv. Sci. 6 1900471 [9] Chen X, Chen Y, Yan M and Qiu M 2012 ACS Nano 6 2550 [10] Baffou G and Quidant R 2013 Laser Photon. Rev. 7 171 [11] Gobin A M, Lee M H, Halas N J, James W D, Drezek R A and West J L 2007 Nano Lett. 7 1929 [12] Zhou L, Tan Y, Wang J, Xu W, Yuan Y, Cai W, Zhu S and Zhu J 2016 Nat. Photon. 10 393 [13] Zhan C, Moskovits M and Tian Z Q 2020 Matter 3 42 [14] Fan X, Zheng W and Singh D J 2014 Light: Sci. Appl. 3 e179 [15] Minutella E, Schulz F and Lange H 2017 J. Phys. Chem. Lett. 8 4925 [16] Harutyunyan H, Martinson A, Rosenmann D, Khorashad L K, Besteiro L V, Govorov A O and Wiederrecht G P 2015 Nat. Nanotechnol. 10 770 [17] Zhou L, Zhang C, McClain M J, Manjavacas A, Krauter C M, Tian S, Berg F, Everitt H O, Carter E A, Nordlander P and Halas N J 2016 Nano Lett. 16 1478 [18] Bathe K 2000 Finite Element Method (John Wiley & Sons, Inc.) [19] Baffou G, Quidant R and Girard C 2009 Appl. Phys. Lett. 94 153109 [20] Werner D, Hashimoto S and Uwada T 2010 Langmuir 26 9956 [21] Vial A, Grimault A S, Macias D, Barchiesi D and Chapelle M 2005 Phys. Rev. B 71 85416 [22] Pakizeh T 2011 J. Phys. Chem. C 115 21826 [23] Rakić A D, Djurišić A B, Elazar J M and Majewski M L 1998 Appl. Opt. 37 5271 [24] Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370 [25] Schlather A E, Manjavacas A, Lauchner A, Marangoni V S and Halas N J 2017 J. Phys. Chem. Lett. 8 2060 [26] Khurgin J B and Boltasseva A 2012 MRS Bull. 37 768 [27] Ortolani M, Mancini A, Budweg A, Garoli D, Brida D and Angelis F D 2019 Phys. Rev. B 99 035435 [28] Zhao H, Zheng B Y, Manjavacas A, Mcclain M, Nordlander P and Halas N J 2015 Nat. Commun. 6 7797 [29] Zhang C, Kong T, Fu Z, Zhang Z and Zheng H 2020 Small 12 8768 [30] Kale M J, Avanesian T and Christopher P 2014 ACS Catal. 4 116 [31] Mukherjee S, Libisch F, Large N, Neumann O and Halas N J 2012 Nano Lett. 13 240 [32] Christopher P, Xin H, Marimuthu A and Linic S 2012 Nat. Mater. 11 1044 [33] Christopher P, Xin H and Linic S 2011 Nat. Chem. 3 467 [34] Christensen N E and Seraphin B O 1971 Solid State Commun. 8 1221 [35] Hirohito F 1971 J. Phys. Soc. Jpn. 30 399 [36] Berciaud S, Cognet L, Tamarat P and Lounis B 2005 Nano Lett. 5 515 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|