Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 077301    DOI: 10.1088/1674-1056/abfa0c
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Quantifying plasmon resonance and interband transition contributions in photocatalysis of gold nanoparticle

Liang Dong(董亮), Chengyun Zhang(张成云), Lei Yan(严蕾), Baobao Zhang(张宝宝), Huan Chen(陈环), Xiaohu Mi(弥小虎), Zhengkun Fu(付正坤), Zhenglong Zhang(张正龙), and Hairong Zheng(郑海荣)
School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China
Abstract  Localized surface plasmon has been extensively studied and used for the photocatalysis of various chemical reactions. However, the different contributions between plasmon resonance and interband transition in photocatalysis has not been well understood. Here, we study the photothermal and hot electrons effects for crystal transformation by combining controlled experiments with numerical simulations. By photo-excitation of NaYF4:Eu3+@Au composite structure, it is found that the plasmonic catalysis is much superior to that of interband transition in the experiments, owing to the hot electrons generated by plasmon decay more energetic to facilitate the reaction. We emphasize that the energy level of hot electrons plays an essential role for improving the photocatalytic activity. The results provide guidelines for improving the efficiency of plasmonic catalysis in future experimental design.
Keywords:  surface plasmon      interband transition      hot electron      photothermal effect  
Received:  19 January 2021      Revised:  27 March 2021      Accepted manuscript online:  21 April 2021
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  31.15.xf (Finite-difference schemes)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2020YFA0211300), the National Natural Science Foundation of China (Grant Nos. 92050112, 12074237, and 12004233), and the Fundamental Research Funds for Central Universities, China (Grant Nos. GK202103010 and GK202103018).
Corresponding Authors:  Lei Yan, Zhenglong Zhang     E-mail:  yanlei@snnu.edu.cn;zlzhang@snnu.edu.cn

Cite this article: 

Liang Dong(董亮), Chengyun Zhang(张成云), Lei Yan(严蕾), Baobao Zhang(张宝宝), Huan Chen(陈环), Xiaohu Mi(弥小虎), Zhengkun Fu(付正坤), Zhenglong Zhang(张正龙), and Hairong Zheng(郑海荣) Quantifying plasmon resonance and interband transition contributions in photocatalysis of gold nanoparticle 2021 Chin. Phys. B 30 077301

[1] Pelton M, Aizpurua J and Bryant G 2008 Laser Photon. Rev. 2 136
[2] Sönnichsen C, Franzl T, Wilk T, von Plessen G, Feldmann J, Wilson O and Mulvaney P 2002 Phys. Rev. Lett. 88 077402
[3] Mascaretti L, Dutta A, Kment Š, Shalaev, V M, Boltasseva A, Zbořil R and Naldoni A 2019 Adv. Mater. 31 1805513
[4] Guselnikova O, Trelin A, Miliutina E, Elashnikov R and Lyutakov O 2020 ACS Appl. Mater. Interfaces 12 28110
[5] Xiao M, Jiang R, Wang F, Fang C, Wang J and Yu J C 2013 J. Mater. Chem. A 1 5790
[6] Tu H, Cheng J, Pan G, Han L, Duan B, Wang H, Chen Q, Xu S, Dai Z and Pan L 2021 Chin. Phys. B 30 027802
[7] Park S, Pelton M, Liu M, Guyot-Sionnest P and Scherer N F 2007 J. Phys. Chem. C 111 116
[8] Kim M, Lee J and Nam J 2019 Adv. Sci. 6 1900471
[9] Chen X, Chen Y, Yan M and Qiu M 2012 ACS Nano 6 2550
[10] Baffou G and Quidant R 2013 Laser Photon. Rev. 7 171
[11] Gobin A M, Lee M H, Halas N J, James W D, Drezek R A and West J L 2007 Nano Lett. 7 1929
[12] Zhou L, Tan Y, Wang J, Xu W, Yuan Y, Cai W, Zhu S and Zhu J 2016 Nat. Photon. 10 393
[13] Zhan C, Moskovits M and Tian Z Q 2020 Matter 3 42
[14] Fan X, Zheng W and Singh D J 2014 Light: Sci. Appl. 3 e179
[15] Minutella E, Schulz F and Lange H 2017 J. Phys. Chem. Lett. 8 4925
[16] Harutyunyan H, Martinson A, Rosenmann D, Khorashad L K, Besteiro L V, Govorov A O and Wiederrecht G P 2015 Nat. Nanotechnol. 10 770
[17] Zhou L, Zhang C, McClain M J, Manjavacas A, Krauter C M, Tian S, Berg F, Everitt H O, Carter E A, Nordlander P and Halas N J 2016 Nano Lett. 16 1478
[18] Bathe K 2000 Finite Element Method (John Wiley & Sons, Inc.)
[19] Baffou G, Quidant R and Girard C 2009 Appl. Phys. Lett. 94 153109
[20] Werner D, Hashimoto S and Uwada T 2010 Langmuir 26 9956
[21] Vial A, Grimault A S, Macias D, Barchiesi D and Chapelle M 2005 Phys. Rev. B 71 85416
[22] Pakizeh T 2011 J. Phys. Chem. C 115 21826
[23] Rakić A D, Djurišić A B, Elazar J M and Majewski M L 1998 Appl. Opt. 37 5271
[24] Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370
[25] Schlather A E, Manjavacas A, Lauchner A, Marangoni V S and Halas N J 2017 J. Phys. Chem. Lett. 8 2060
[26] Khurgin J B and Boltasseva A 2012 MRS Bull. 37 768
[27] Ortolani M, Mancini A, Budweg A, Garoli D, Brida D and Angelis F D 2019 Phys. Rev. B 99 035435
[28] Zhao H, Zheng B Y, Manjavacas A, Mcclain M, Nordlander P and Halas N J 2015 Nat. Commun. 6 7797
[29] Zhang C, Kong T, Fu Z, Zhang Z and Zheng H 2020 Small 12 8768
[30] Kale M J, Avanesian T and Christopher P 2014 ACS Catal. 4 116
[31] Mukherjee S, Libisch F, Large N, Neumann O and Halas N J 2012 Nano Lett. 13 240
[32] Christopher P, Xin H, Marimuthu A and Linic S 2012 Nat. Mater. 11 1044
[33] Christopher P, Xin H and Linic S 2011 Nat. Chem. 3 467
[34] Christensen N E and Seraphin B O 1971 Solid State Commun. 8 1221
[35] Hirohito F 1971 J. Phys. Soc. Jpn. 30 399
[36] Berciaud S, Cognet L, Tamarat P and Lounis B 2005 Nano Lett. 5 515
[1] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[2] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[3] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[4] Chiral lateral optical force near plasmonic ring induced by Laguerre-Gaussian beam
Ying-Dong Nie(聂英东), Zhi-Guang Sun(孙智广), and Yu-Rui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(1): 018702.
[5] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[6] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[7] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[8] Multi-frequency focusing of microjets generated by polygonal prisms
Yu-Jing Yang(杨育静), De-Long Zhang(张德龙), and Ping-Rang Hua(华平壤). Chin. Phys. B, 2022, 31(3): 034201.
[9] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[10] High sensitivity plasmonic temperature sensor based on a side-polished photonic crystal fiber
Zhigang Gao(高治刚), Xili Jing(井西利), Yundong Liu(刘云东), Hailiang Chen(陈海良), and Shuguang Li(李曙光). Chin. Phys. B, 2022, 31(2): 024207.
[11] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[12] Sensitivity improvement of aluminum-based far-ultraviolet nearly guided-wave surface plasmon resonance sensor
Tianqi Li(李天琦), Shujing Chen(陈淑静), and Chengyou Lin(林承友). Chin. Phys. B, 2022, 31(12): 124208.
[13] Ultra-wideband surface plasmonic bandpass filter with extremely wide upper-band rejection
Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Qi-Ming Yu(余奇明), Ling-Ling Wang(王玲玲), Kun Liao(廖昆), and Jian Lou(娄健). Chin. Phys. B, 2022, 31(11): 114101.
[14] Enhanced and tunable circular dichroism in the visible waveband by coupling of the waveguide mode and local surface plasmon resonances in double-layer asymmetric metal grating
Liu-Li Wang(王刘丽), Yang Gu(顾阳), Yi-Jing Chen(陈怡静), Ya-Xian Ni(倪亚贤), and Wen Dong(董雯). Chin. Phys. B, 2022, 31(11): 118103.
[15] Enhanced photon emission by field emission resonances and local surface plasmon in tunneling junction
Jian-Mei Li(李健梅), Dong Hao(郝东), Li-Huan Sun(孙丽欢), Xiang-Qian Tang(唐向前), Yang An(安旸), Xin-Yan Shan(单欣岩), and Xing-Hua Lu(陆兴华). Chin. Phys. B, 2022, 31(11): 116801.
No Suggested Reading articles found!