CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
A novel high breakdown voltage and high switching speed GaN HEMT with p-GaN gate and hybrid AlGaN buffer layer for power electronics applications |
Yong Liu(刘勇), Qi Yu(于奇), and Jiang-Feng Du(杜江锋)† |
State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China |
|
|
Abstract A novel p-GaN gate GaN high-electron-mobility transistor (HEMT) with an AlGaN buffer layer and hybrid dielectric zone (H-HEMT) is proposed. The hybrid dielectric zone is located in the buffer and composed of horizontal arranged HfO2 zone and SiNx zone. The proposed H-HEMT is numerically simulated and optimized by the Silvaco TCAD tools (ATLAS), and the DC, breakdown, C-V and switching properties of the proposed device are characterized. The breakdown voltage of the proposed HEMT is significantly improved with the introduction of the hybrid dielectric zone, which can effectively modulate the electric field distribution in the GaN channel and the buffer. High breakdown voltage of 1490 V, low specific on-state resistance of 0.45 mΩ cm2 and high Baliga's figure of merit (FOM) of 5.3 GW/cm2, small R onQ oss of 212 mΩ nC, high turn-on speed 627 V/ns and high turn-off speed 87 V/ns are obtained at the same time with the gate-to-drain distance L gd of 6 μ m.
|
Received: 11 June 2020
Revised: 21 July 2020
Accepted manuscript online: 13 August 2020
|
PACS:
|
73.40.Kp
|
(III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)
|
|
73.61.Ey
|
(III-V semiconductors)
|
|
78.30.Fs
|
(III-V and II-VI semiconductors)
|
|
77.22.Ch
|
(Permittivity (dielectric function))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61376078). |
Corresponding Authors:
†Corresponding author. E-mail: jfdu@uestc.edu.cn
|
Cite this article:
Yong Liu(刘勇), Qi Yu(于奇), and Jiang-Feng Du(杜江锋) A novel high breakdown voltage and high switching speed GaN HEMT with p-GaN gate and hybrid AlGaN buffer layer for power electronics applications 2020 Chin. Phys. B 29 127701
|
[1] Hudgins J L, Simin G S, Santi E and Khan M A IEEE Trans. Power Electron. 18 907 DOI: 10.1109/TPEL.632003 [2] Dora Y, Chakraborty A, McCarthy L, Keller S, DenBaars S P and Mishra U K IEEE Electron Dev. Lett. 27 713 DOI: 10.1109/LED.2006.8810202006 [3] Wang Z X, Du L, Liu J W, Wang Y, Jiang Y, Ji S W, Dong S W, Chen W W, Tan X H, Li J L, Li X J, Zhao S L, Zhang J C and Hao Y Chin. Phys. B 29 027301 DOI: 10.1088/1674-1056/ab5fb92020 [4] Liu J, Wang L Q and Huang Z X 2019 Acta Phys. Sin. 68 248501 (in Chinese) DOI: 10.7498/aps.68.20191311 [5] Bao S Q G W, Ma X H, Chen W W, Yang L, Hou B, Zhu Q, Zhu J J and Hao Y Chin. Phys. B 28 067304 DOI: 10.1088/1674-1056/28/6/0673042019 [6] Uemoto Y, Hikita M, Ueno H, Matsuo H, Ishida H, Yanagihara M, Ueda T, Tanaka T and Ueda D IEEE International Electron Devices Meeting, San Francisco, CA, December 11-13, 2006, pp. 1-4 DOI: 10.1109/IEDM.2006.3469302006 [7] Ueda T, Handa H, Kinosita Y, Umeda H, Ujita S, Kajitani R, Ogawa M, Tanaka K, Morita T, Tamura S, Ishida H and IshidaM IEEE International Electron Devices Meeting, San Francisco, CA, December 15-17, 2014, pp. 11.3.1-11.3.4 DOI: 10.1109/IEDM.2014.70470312014 [8] Ishida M, Ueda T, Tanaka T and Ueda D IEEE Trans. Electron Dev. 60 3053 DOI: 10.1109/TED.2013.22685772013 [9] Huang X C, Liu Z Y, Lee F C and Li Q IEEE Trans. Electron Dev. 62 270 DOI: 10.1109/TED.2014.23585342015 [10] Han P C, Wu C H, Ho Y H, Yan Z Z and Chang E Y 31st IEEE International Symposium on Power Semiconductor Devices and ICs (ISPSD) Shanghai, China, May 19-23, 2019, pp. 427-430 DOI: 10.1109/ISPSD.2019.87576752019 [11] Wu C H, Han P C, Luc Q H, Hsu C Y, Hsieh T E, Wang H C, Lin Y K, Chang P C, Lin Y C and Chang E Y IEEE J. Electron Dev. Soc. 6 893 DOI: 10.1109/JEDS.2018.28597692018 [12] Zhu M H, Ma J, Nela L, Erine C and Matioli E IEEE Electron Dev. Lett. 40 1289 DOI: 10.1109/LED.552019 [13] Zhou G N, Wan Z Y, Yang G Y, Jiang Y, Sokolovskij R, Yu H and Xia G R IEEE Trans. Electron Dev. 67 875 DOI: 10.1109/TED.162020 [14] Chen Y Q, Feng J T, Wang J L, Xu X B, He Z Y, Li G Y, Lei D Y, Chen Y and Huang Y IEEE Trans. Electron Dev. 67 566 DOI: 10.1109/TED.162020 [15] Ge M, Cai Q, Zhang B H, Chen D J, Hu L Q, Xue J J, Lu H, Zhang R and Zheng Y D Chin. Phys. B 28 107301 DOI: 10.1088/1674-1056/ab3e002019 [16] Hand a H, Ujita S, Shibata D, Kajitani R, Shiozaki N, Ogawa M, Umeda H, Tanaka K, Tamura S, Hatsuda T, Ishida M and Tetsuzo U IEEE International Electron Devices Meeting (IEDM) San Francisco, CA, December 3-7, 2016, pp. 10.3.1-10.3.4 DOI: 10.1109/IEDM.2016.78383872016 [17] Tanaka K, Morita T, Umeda H, Kaneko M, Kuroda M, Ikoshi A, Yamagiwa H, Okita H, Hikita M, Yanagihara M, Uemoto Y, Takahashi S, Ueno H, Ishida H, Ishida M and Ueda T Appl. Phys. Lett. 107 163502 DOI: 10.1063/1.49341842015 [18] Chu R M, Hughes B, Chen M, Brown D, Li R, Khalil S, Zehnder D, Chen S, Williams A, Garrido A, Musni M and Boutros K IEEE 71st Device Research Conference, Notre Dame, IN, June 23-26, 2013, pp. 199-200 DOI: 10.1109/DRC.2013.66338622013 [19] Lee H S, Piedra D, Sun M, Gao X, Guo S P and Palacios T IEEE Electron Dev. Lett. 33 982 DOI: 10.1109/LED.2012.21966732012 [20] Hilt O, Knauer A, Brunner F, Treidel E B and Würfl J IEEE 23rd International Symposium on Power Semiconductor Devives & ICs, San Diego, CA, May 23-26, 2011, pp. 239-242 DOI: 10.1109/ISPSD.2011.58908352011 [21] Tang C J and Shi J X Semiconduct. Sci. Technol. 28 115011 DOI: 10.1088/0268-1242/28/11/1150112013 [22] Bai Z Y, Du J F, Liu Y, Xin Q, Liu Y and Yu Q Solid-State Electron. 133 31 DOI: 10.1016/j.sse.2017.03.0132017 [23] Medjdoub F, Derluyn J, Cheng K, Leys M, Degroote S, Marcon D, Visalli D, Hove M V, Germain M and Borghs G IEEE Electron Dev. Lett. 31 111 DOI: 10.1109/LED.2009.20377192010 [24] Tang Z K, Jiang Q M, Lu Y Y, Huang S, Yang S, Tang X and Chen K J IEEE Electron Dev. Lett. 34 1373 DOI: 10.1109/LED.2013.22798462013 [25] Treidel E B, Brunner F, Hilt O, Cho E, Würfl J and Tränkle G IEEE Trans. Electron Dev. 57 3050 DOI: 10.1109/TED.2010.20695662010 [26] Treidel E B, Hilt O, Brunner F, Sidorov V, Würfl J and Tränkle G IEEE Trans. Electron Dev. 57 1208 DOI: 10.1109/TED.2010.20457052010 [27] Wang H X, Wei J, Xie R L, Liu C, Tang G F and Chen K J IEEE Trans. Power Electron. 32 5539 DOI: 10.1109/TPEL.2016.26104602017 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|