Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(12): 127701    DOI: 10.1088/1674-1056/abaee5
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

A novel high breakdown voltage and high switching speed GaN HEMT with p-GaN gate and hybrid AlGaN buffer layer for power electronics applications

Yong Liu(刘勇), Qi Yu(于奇), and Jiang-Feng Du(杜江锋)†
State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract  A novel p-GaN gate GaN high-electron-mobility transistor (HEMT) with an AlGaN buffer layer and hybrid dielectric zone (H-HEMT) is proposed. The hybrid dielectric zone is located in the buffer and composed of horizontal arranged HfO2 zone and SiNx zone. The proposed H-HEMT is numerically simulated and optimized by the Silvaco TCAD tools (ATLAS), and the DC, breakdown, C-V and switching properties of the proposed device are characterized. The breakdown voltage of the proposed HEMT is significantly improved with the introduction of the hybrid dielectric zone, which can effectively modulate the electric field distribution in the GaN channel and the buffer. High breakdown voltage of 1490 V, low specific on-state resistance of 0.45 mΩ cm2 and high Baliga's figure of merit (FOM) of 5.3 GW/cm2, small R onQ oss of 212 mΩ nC, high turn-on speed 627 V/ns and high turn-off speed 87 V/ns are obtained at the same time with the gate-to-drain distance L gd of 6 μ m.
Keywords:  GaN HEMT      breakdown voltage      high-permittivity dielectric      low-permittivity dielectric  
Received:  11 June 2020      Revised:  21 July 2020      Accepted manuscript online:  13 August 2020
PACS:  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  73.61.Ey (III-V semiconductors)  
  78.30.Fs (III-V and II-VI semiconductors)  
  77.22.Ch (Permittivity (dielectric function))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61376078).
Corresponding Authors:  Corresponding author. E-mail: jfdu@uestc.edu.cn   

Cite this article: 

Yong Liu(刘勇), Qi Yu(于奇), and Jiang-Feng Du(杜江锋) A novel high breakdown voltage and high switching speed GaN HEMT with p-GaN gate and hybrid AlGaN buffer layer for power electronics applications 2020 Chin. Phys. B 29 127701

[1] Hudgins J L, Simin G S, Santi E and Khan M A IEEE Trans. Power Electron. 18 907 DOI: 10.1109/TPEL.632003
[2] Dora Y, Chakraborty A, McCarthy L, Keller S, DenBaars S P and Mishra U K IEEE Electron Dev. Lett. 27 713 DOI: 10.1109/LED.2006.8810202006
[3] Wang Z X, Du L, Liu J W, Wang Y, Jiang Y, Ji S W, Dong S W, Chen W W, Tan X H, Li J L, Li X J, Zhao S L, Zhang J C and Hao Y Chin. Phys. B 29 027301 DOI: 10.1088/1674-1056/ab5fb92020
[4] Liu J, Wang L Q and Huang Z X 2019 Acta Phys. Sin. 68 248501 (in Chinese) DOI: 10.7498/aps.68.20191311
[5] Bao S Q G W, Ma X H, Chen W W, Yang L, Hou B, Zhu Q, Zhu J J and Hao Y Chin. Phys. B 28 067304 DOI: 10.1088/1674-1056/28/6/0673042019
[6] Uemoto Y, Hikita M, Ueno H, Matsuo H, Ishida H, Yanagihara M, Ueda T, Tanaka T and Ueda D IEEE International Electron Devices Meeting, San Francisco, CA, December 11-13, 2006, pp. 1-4 DOI: 10.1109/IEDM.2006.3469302006
[7] Ueda T, Handa H, Kinosita Y, Umeda H, Ujita S, Kajitani R, Ogawa M, Tanaka K, Morita T, Tamura S, Ishida H and IshidaM IEEE International Electron Devices Meeting, San Francisco, CA, December 15-17, 2014, pp. 11.3.1-11.3.4 DOI: 10.1109/IEDM.2014.70470312014
[8] Ishida M, Ueda T, Tanaka T and Ueda D IEEE Trans. Electron Dev. 60 3053 DOI: 10.1109/TED.2013.22685772013
[9] Huang X C, Liu Z Y, Lee F C and Li Q IEEE Trans. Electron Dev. 62 270 DOI: 10.1109/TED.2014.23585342015
[10] Han P C, Wu C H, Ho Y H, Yan Z Z and Chang E Y 31st IEEE International Symposium on Power Semiconductor Devices and ICs (ISPSD) Shanghai, China, May 19-23, 2019, pp. 427-430 DOI: 10.1109/ISPSD.2019.87576752019
[11] Wu C H, Han P C, Luc Q H, Hsu C Y, Hsieh T E, Wang H C, Lin Y K, Chang P C, Lin Y C and Chang E Y IEEE J. Electron Dev. Soc. 6 893 DOI: 10.1109/JEDS.2018.28597692018
[12] Zhu M H, Ma J, Nela L, Erine C and Matioli E IEEE Electron Dev. Lett. 40 1289 DOI: 10.1109/LED.552019
[13] Zhou G N, Wan Z Y, Yang G Y, Jiang Y, Sokolovskij R, Yu H and Xia G R IEEE Trans. Electron Dev. 67 875 DOI: 10.1109/TED.162020
[14] Chen Y Q, Feng J T, Wang J L, Xu X B, He Z Y, Li G Y, Lei D Y, Chen Y and Huang Y IEEE Trans. Electron Dev. 67 566 DOI: 10.1109/TED.162020
[15] Ge M, Cai Q, Zhang B H, Chen D J, Hu L Q, Xue J J, Lu H, Zhang R and Zheng Y D Chin. Phys. B 28 107301 DOI: 10.1088/1674-1056/ab3e002019
[16] Hand a H, Ujita S, Shibata D, Kajitani R, Shiozaki N, Ogawa M, Umeda H, Tanaka K, Tamura S, Hatsuda T, Ishida M and Tetsuzo U IEEE International Electron Devices Meeting (IEDM) San Francisco, CA, December 3-7, 2016, pp. 10.3.1-10.3.4 DOI: 10.1109/IEDM.2016.78383872016
[17] Tanaka K, Morita T, Umeda H, Kaneko M, Kuroda M, Ikoshi A, Yamagiwa H, Okita H, Hikita M, Yanagihara M, Uemoto Y, Takahashi S, Ueno H, Ishida H, Ishida M and Ueda T Appl. Phys. Lett. 107 163502 DOI: 10.1063/1.49341842015
[18] Chu R M, Hughes B, Chen M, Brown D, Li R, Khalil S, Zehnder D, Chen S, Williams A, Garrido A, Musni M and Boutros K IEEE 71st Device Research Conference, Notre Dame, IN, June 23-26, 2013, pp. 199-200 DOI: 10.1109/DRC.2013.66338622013
[19] Lee H S, Piedra D, Sun M, Gao X, Guo S P and Palacios T IEEE Electron Dev. Lett. 33 982 DOI: 10.1109/LED.2012.21966732012
[20] Hilt O, Knauer A, Brunner F, Treidel E B and Würfl J IEEE 23rd International Symposium on Power Semiconductor Devives & ICs, San Diego, CA, May 23-26, 2011, pp. 239-242 DOI: 10.1109/ISPSD.2011.58908352011
[21] Tang C J and Shi J X Semiconduct. Sci. Technol. 28 115011 DOI: 10.1088/0268-1242/28/11/1150112013
[22] Bai Z Y, Du J F, Liu Y, Xin Q, Liu Y and Yu Q Solid-State Electron. 133 31 DOI: 10.1016/j.sse.2017.03.0132017
[23] Medjdoub F, Derluyn J, Cheng K, Leys M, Degroote S, Marcon D, Visalli D, Hove M V, Germain M and Borghs G IEEE Electron Dev. Lett. 31 111 DOI: 10.1109/LED.2009.20377192010
[24] Tang Z K, Jiang Q M, Lu Y Y, Huang S, Yang S, Tang X and Chen K J IEEE Electron Dev. Lett. 34 1373 DOI: 10.1109/LED.2013.22798462013
[25] Treidel E B, Brunner F, Hilt O, Cho E, Würfl J and Tränkle G IEEE Trans. Electron Dev. 57 3050 DOI: 10.1109/TED.2010.20695662010
[26] Treidel E B, Hilt O, Brunner F, Sidorov V, Würfl J and Tränkle G IEEE Trans. Electron Dev. 57 1208 DOI: 10.1109/TED.2010.20457052010
[27] Wang H X, Wei J, Xie R L, Liu C, Tang G F and Chen K J IEEE Trans. Power Electron. 32 5539 DOI: 10.1109/TPEL.2016.26104602017
[1] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[2] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[3] Lateral β-Ga2O3 Schottky barrier diode fabricated on (-201) single crystal substrate and its temperature-dependent current-voltage characteristics
Pei-Pei Ma(马培培), Jun Zheng(郑军), Ya-Bao Zhang(张亚宝), Xiang-Quan Liu(刘香全), Zhi Liu(刘智), Yu-Hua Zuo(左玉华), Chun-Lai Xue(薛春来), and Bu-Wen Cheng(成步文). Chin. Phys. B, 2022, 31(4): 047302.
[4] Fast-switching SOI-LIGBT with compound dielectric buried layer and assistant-depletion trench
Chunzao Wang(王春早), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2022, 31(4): 047304.
[5] Modeling of high permittivity insulator structure with interface charge by charge compensation
Zhi-Gang Wang(汪志刚), Yun-Feng Gong(龚云峰), and Zhuang Liu(刘壮). Chin. Phys. B, 2022, 31(2): 028501.
[6] High power-added-efficiency AlGaN/GaN HEMTs fabricated by atomic level controlled etching
Xinchuang Zhang(张新创), Bin Hou(侯斌), Fuchun Jia(贾富春), Hao Lu(芦浩), Xuerui Niu(牛雪锐), Mei Wu(武玫), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027301.
[7] Fluorine-plasma treated AlGaN/GaN high electronic mobility transistors under off-state overdrive stress
Dongyan Zhao(赵东艳), Yubo Wang(王于波), Yanning Chen(陈燕宁), Jin Shao(邵瑾), Zhen Fu(付振), Fang Liu(刘芳), Yanrong Cao(曹艳荣), Faqiang Zhao(赵法强), Mingchen Zhong(钟明琛), Yasong Zhang(张亚松), Maodan Ma(马毛旦), Hanghang Lv(吕航航), Zhiheng Wang(王志恒), Ling Lv(吕玲), Xuefeng Zheng(郑雪峰), and Xiaohua Ma(马晓华). Chin. Phys. B, 2022, 31(11): 117301.
[8] A novel Si-rich SiN bilayer passivation with thin-barrier AlGaN/GaN HEMTs for high performance millimeter-wave applications
Zhihong Chen(陈治宏), Minhan Mi(宓珉瀚), Jielong Liu(刘捷龙), Pengfei Wang(王鹏飞), Yuwei Zhou(周雨威), Meng Zhang(张濛), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(11): 117105.
[9] Terminal-optimized 700-V LDMOS with improved breakdown voltage and ESD robustness
Jie Xu(许杰), Nai-Long He(何乃龙), Hai-Lian Liang(梁海莲), Sen Zhang(张森), Yu-De Jiang(姜玉德), and Xiao-Feng Gu(顾晓峰). Chin. Phys. B, 2021, 30(6): 067303.
[10] Design and simulation of AlN-based vertical Schottky barrier diodes
Chun-Xu Su(苏春旭), Wei Wen(温暐), Wu-Xiong Fei(费武雄), Wei Mao(毛维), Jia-Jie Chen(陈佳杰), Wei-Hang Zhang(张苇杭), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(6): 067305.
[11] A super-junction SOI-LDMOS with low resistance electron channel
Wei-Zhong Chen(陈伟中), Yuan-Xi Huang(黄元熙), Yao Huang(黄垚), Yi Huang(黄义), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2021, 30(5): 057303.
[12] Improved 4H-SiC UMOSFET with super-junction shield region
Pei Shen(沈培), Ying Wang(王颖), Xing-Ji Li(李兴冀), Jian-Qun Yang(杨剑群), Cheng-Hao Yu(于成浩), and Fei Cao(曹菲). Chin. Phys. B, 2021, 30(5): 058502.
[13] Novel Si/SiC heterojunction lateral double-diffused metal-oxide semiconductor field-effect transistor with p-type buried layer breaking silicon limit
Baoxing Duan(段宝兴), Xin Huang(黄鑫), Haitao Song (宋海涛), Yandong Wang(王彦东), and Yintang Yang(杨银堂). Chin. Phys. B, 2021, 30(4): 048503.
[14] Novel fast-switching LIGBT with P-buried layer and partial SOI
Haoran Wang(王浩然), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2021, 30(2): 027302.
[15] Impact of oxygen in electrical properties and hot-carrier stress-induced degradation of GaN high electron mobility transistors
Lixiang Chen(陈丽香), Min Ma(马敏), Jiecheng Cao(曹杰程), Jiawei Sun(孙佳惟), Miaoling Que(阙妙玲), and Yunfei Sun(孙云飞). Chin. Phys. B, 2021, 30(10): 108502.
No Suggested Reading articles found!