CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure |
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋)†, and Qi Yu(于奇) |
State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China |
|
|
Abstract A vertical junction barrier Schottky diode with a high-$K$/low-$K$ compound dielectric structure is proposed and optimized to achieve a high breakdown voltage (BV). There is a discontinuity of the electric field at the interface of high-$K$ and low-$K$ layers due to the different dielectric constants of high-$K$ and low-$K$ dielectric layers. A new electric field peak is introduced in the n-type drift region of junction barrier Schottky diode (JBS), so the distribution of electric field in JBS becomes more uniform. At the same time, the effect of electric-power line concentration at the p-n junction interface is suppressed due to the effects of the high-$K$ dielectric layer and an enhancement of breakdown voltage can be achieved. Numerical simulations demonstrate that GaN JBS with a specific on-resistance ($R_{\rm on, sp}$) of 2.07 m$\Omega\cdot$cm$^{2}$ and a BV of 4171 V which is 167% higher than the breakdown voltage of the common structure, resulting in a high figure-of-merit (FOM) of 8.6 GW/cm$^{2}$, and a low turn-on voltage of 0.6 V.
|
Received: 24 June 2022
Revised: 19 August 2022
Accepted manuscript online: 02 September 2022
|
PACS:
|
73.61.Ey
|
(III-V semiconductors)
|
|
73.40.Kp
|
(III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)
|
|
77.22.Ch
|
(Permittivity (dielectric function))
|
|
85.30.Mn
|
(Junction breakdown and tunneling devices (including resonance tunneling devices))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61376078) and the Natural Science Foundation of Sichuan Province, China (Grant No. 2022NSFSC0515). |
Corresponding Authors:
Jiangfeng Du
E-mail: jfdu@uestc.edu.cn
|
Cite this article:
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇) Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure 2023 Chin. Phys. B 32 017306
|
[1] Millan J, Godignon P, Perpina X, Perez-Tomas A and Rebollo J 2014 IEEE Trans. Power Electron. 29 2155 [2] Kizilyalli I C, Edwards A P, Aktas O, Prunty T and Bour D 2015 IEEE Trans. Electron. Dev. 62 414 [3] Wang Z X, Du L, Liu J W, Wang Y, Jiang Y, Ji S W, Dong S W, Chen W W, Tan X H, Li J L, Li X J, Zhao S L, Zhang J C and Hao Y 2020 Chin. Phys. B 29 027301 [4] Hatakeyama Y, Nomoto K, Terano A, Kaneda N, Tsuchiya T, Mishima T and Nakamura T 2013 Jpn. J. Appl. Phys. 52 028007 [5] Zhang Y H, Yuan M Y, Chowdhury N, Cheng K and Palacios T 2018 IEEE Electron Dev. Lett. 39 715 [6] Chen S H, Chen H, Qiu Y B and Liu C 2021 IEEE Trans. Electron. Dev. 68 5707 [7] Zhang Y H, Piedra D, Sun M, Hennig J, Dadgar A, Yu L and Palacios T 2017 IEEE Electron Dev. Lett. 38 248 [8] Kizilyalli I C, Edwards A P, Nie H, Bour D, Prunty T and Disney D 2014 IEEE Electron Dev. Lett. 35 247 [9] Ohta H, Kaneda N, Horikiri F, Narita Y, Yoshida T, Mishima T and Nakamura T 2015 IEEE Electron Dev. Lett. 36 1180 [10] Bian Z L, Zeng K and Chowdhury S 2022 IEEE Electron Dev. Lett. 43 596 [11] Armstrong A M, Allerman A A, Pickrell G W, Crawford M H, Glaser C E and Smith T 2021 IEEE J. Electron Dev. 9 318 [12] Lee K H, Chang S J, Chang P C, Wang Y C and Kou C H 2008 Appl. Phys. Lett. 93 132110 [13] Jia X Y, Chen S H, Liu Y J, Hou X, Zhang Y H, Zhang Z H and Kou H C 2020 IEEE Trans. Electron. Dev. 67 1931 [14] Zhou F, Xu W Z, Ren F F, Zhou D, Chen D J, Zhang R, Zheng Y D, Zhu T G and Lu H 2021 IEEE Electron Dev. Lett. 42 974 [15] Zhang Y H, Liu Z H, Tadjer M J, Sun M, Piedra D, Hatem C, Anderson T J, Luna L E, Nath A, Koehler A D, Okumura H, Hu J, Zhang X, Gao X, Feigelson B N, Hobart K D and Palacios T 2017 IEEE Electron Dev. Lett. 38 1097 [16] Hanawa H, Onodera H, Nakajima A and Horio K 2014 IEEE Trans. Electron. Dev. 61 769 [17] Liu C, Chor E F and Tan L S 2007 Semicond. Sci. Technol. 22 522 [18] Kabemura T, Ueda S, Kawada Y and Horio K 2018 IEEE Trans. Electron. Dev. 65 3848 [19] Du J F, Li Z C, Liu D, Bai Z Y, Liu Y and Yu Q 2017 Superlattice. Microst. 111 302 [20] Pipinys P and Lapeika V 2006 J. Appl. Phys. 99 093709 [21] Albrecht J D, Wang R P, Ruden P P, Farahmand M and Brennan K F 1998 J. Appl. Phys. 83 4777 [22] Farahmand M, Garetto C, Bellotti E, Brennan K F, Goano M, Ghillino E, Ghione G, Albrecht J D and Ruden P P 2001 IEEE Trans. Electron. Dev. 48 535 [23] Oguzman I H, Bellotti E, Brennan K F, Kolnik J, Wang R P and Ruden P P 1997 J. Appl. Phys. 81 7827 [24] Farzana E, Wang J F, Monavarian M, Itoh T, Qwah K S, Biegler Z J, Jorgensen K F and Speck J S 2020 IEEE Electron Dev. Lett. 41 1806 [25] Fu H Q, Huang X Q, Chen H, Lu Z J, Baranowski I and Zhao Y J 2017 Appl. Phys. Lett. 111 152102 [26] Cao Y, Chu R, Li R, Chen M, Chang R and Hughes B 2016 Appl. Phys. Lett. 108 062103 [27] Han S W, Yang S and Sheng K 2018 IEEE Electron Dev. Lett. 39 572 [28] Nomoto K, Song B, Hu Z Y, Zhu M D, Qi M, Kaneda N, Mishima T, Nakamura T, Jena D and Xing H G 2016 IEEE Electron Dev. Lett. 37 161 [29] Yuan H, Song Q W, Tang X Y, Zhang Y M, Zhang Y M and Zhang Y M 2016 Solid State Electron. 123 58 [30] Pan Y, Tian L, Wu H, Li Y P and Yang F 2017 Microelectron. Eng. 181 10 [31] Song Q W, Yuan H, Han C, Zhang Y M, Tang X Y, Zhang Y M, Guo H, Zhang Y M, Jia R X and Wang Y H 2015 Sci. China Technol. Sci. 58 1369 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|