Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(1): 017306    DOI: 10.1088/1674-1056/ac8e99
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure

Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇)
State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract  A vertical junction barrier Schottky diode with a high-$K$/low-$K$ compound dielectric structure is proposed and optimized to achieve a high breakdown voltage (BV). There is a discontinuity of the electric field at the interface of high-$K$ and low-$K$ layers due to the different dielectric constants of high-$K$ and low-$K$ dielectric layers. A new electric field peak is introduced in the n-type drift region of junction barrier Schottky diode (JBS), so the distribution of electric field in JBS becomes more uniform. At the same time, the effect of electric-power line concentration at the p-n junction interface is suppressed due to the effects of the high-$K$ dielectric layer and an enhancement of breakdown voltage can be achieved. Numerical simulations demonstrate that GaN JBS with a specific on-resistance ($R_{\rm on, sp}$) of 2.07 m$\Omega\cdot$cm$^{2}$ and a BV of 4171 V which is 167% higher than the breakdown voltage of the common structure, resulting in a high figure-of-merit (FOM) of 8.6 GW/cm$^{2}$, and a low turn-on voltage of 0.6 V.
Keywords:  GaN junction barrier Schottky diode      compound dielectric      breakdown voltage      turn-on voltage  
Received:  24 June 2022      Revised:  19 August 2022      Accepted manuscript online:  02 September 2022
PACS:  73.61.Ey (III-V semiconductors)  
  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  77.22.Ch (Permittivity (dielectric function))  
  85.30.Mn (Junction breakdown and tunneling devices (including resonance tunneling devices))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61376078) and the Natural Science Foundation of Sichuan Province, China (Grant No. 2022NSFSC0515).
Corresponding Authors:  Jiangfeng Du     E-mail:  jfdu@uestc.edu.cn

Cite this article: 

Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇) Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure 2023 Chin. Phys. B 32 017306

[1] Millan J, Godignon P, Perpina X, Perez-Tomas A and Rebollo J 2014 IEEE Trans. Power Electron. 29 2155
[2] Kizilyalli I C, Edwards A P, Aktas O, Prunty T and Bour D 2015 IEEE Trans. Electron. Dev. 62 414
[3] Wang Z X, Du L, Liu J W, Wang Y, Jiang Y, Ji S W, Dong S W, Chen W W, Tan X H, Li J L, Li X J, Zhao S L, Zhang J C and Hao Y 2020 Chin. Phys. B 29 027301
[4] Hatakeyama Y, Nomoto K, Terano A, Kaneda N, Tsuchiya T, Mishima T and Nakamura T 2013 Jpn. J. Appl. Phys. 52 028007
[5] Zhang Y H, Yuan M Y, Chowdhury N, Cheng K and Palacios T 2018 IEEE Electron Dev. Lett. 39 715
[6] Chen S H, Chen H, Qiu Y B and Liu C 2021 IEEE Trans. Electron. Dev. 68 5707
[7] Zhang Y H, Piedra D, Sun M, Hennig J, Dadgar A, Yu L and Palacios T 2017 IEEE Electron Dev. Lett. 38 248
[8] Kizilyalli I C, Edwards A P, Nie H, Bour D, Prunty T and Disney D 2014 IEEE Electron Dev. Lett. 35 247
[9] Ohta H, Kaneda N, Horikiri F, Narita Y, Yoshida T, Mishima T and Nakamura T 2015 IEEE Electron Dev. Lett. 36 1180
[10] Bian Z L, Zeng K and Chowdhury S 2022 IEEE Electron Dev. Lett. 43 596
[11] Armstrong A M, Allerman A A, Pickrell G W, Crawford M H, Glaser C E and Smith T 2021 IEEE J. Electron Dev. 9 318
[12] Lee K H, Chang S J, Chang P C, Wang Y C and Kou C H 2008 Appl. Phys. Lett. 93 132110
[13] Jia X Y, Chen S H, Liu Y J, Hou X, Zhang Y H, Zhang Z H and Kou H C 2020 IEEE Trans. Electron. Dev. 67 1931
[14] Zhou F, Xu W Z, Ren F F, Zhou D, Chen D J, Zhang R, Zheng Y D, Zhu T G and Lu H 2021 IEEE Electron Dev. Lett. 42 974
[15] Zhang Y H, Liu Z H, Tadjer M J, Sun M, Piedra D, Hatem C, Anderson T J, Luna L E, Nath A, Koehler A D, Okumura H, Hu J, Zhang X, Gao X, Feigelson B N, Hobart K D and Palacios T 2017 IEEE Electron Dev. Lett. 38 1097
[16] Hanawa H, Onodera H, Nakajima A and Horio K 2014 IEEE Trans. Electron. Dev. 61 769
[17] Liu C, Chor E F and Tan L S 2007 Semicond. Sci. Technol. 22 522
[18] Kabemura T, Ueda S, Kawada Y and Horio K 2018 IEEE Trans. Electron. Dev. 65 3848
[19] Du J F, Li Z C, Liu D, Bai Z Y, Liu Y and Yu Q 2017 Superlattice. Microst. 111 302
[20] Pipinys P and Lapeika V 2006 J. Appl. Phys. 99 093709
[21] Albrecht J D, Wang R P, Ruden P P, Farahmand M and Brennan K F 1998 J. Appl. Phys. 83 4777
[22] Farahmand M, Garetto C, Bellotti E, Brennan K F, Goano M, Ghillino E, Ghione G, Albrecht J D and Ruden P P 2001 IEEE Trans. Electron. Dev. 48 535
[23] Oguzman I H, Bellotti E, Brennan K F, Kolnik J, Wang R P and Ruden P P 1997 J. Appl. Phys. 81 7827
[24] Farzana E, Wang J F, Monavarian M, Itoh T, Qwah K S, Biegler Z J, Jorgensen K F and Speck J S 2020 IEEE Electron Dev. Lett. 41 1806
[25] Fu H Q, Huang X Q, Chen H, Lu Z J, Baranowski I and Zhao Y J 2017 Appl. Phys. Lett. 111 152102
[26] Cao Y, Chu R, Li R, Chen M, Chang R and Hughes B 2016 Appl. Phys. Lett. 108 062103
[27] Han S W, Yang S and Sheng K 2018 IEEE Electron Dev. Lett. 39 572
[28] Nomoto K, Song B, Hu Z Y, Zhu M D, Qi M, Kaneda N, Mishima T, Nakamura T, Jena D and Xing H G 2016 IEEE Electron Dev. Lett. 37 161
[29] Yuan H, Song Q W, Tang X Y, Zhang Y M, Zhang Y M and Zhang Y M 2016 Solid State Electron. 123 58
[30] Pan Y, Tian L, Wu H, Li Y P and Yang F 2017 Microelectron. Eng. 181 10
[31] Song Q W, Yuan H, Han C, Zhang Y M, Tang X Y, Zhang Y M, Guo H, Zhang Y M, Jia R X and Wang Y H 2015 Sci. China Technol. Sci. 58 1369
[1] Demonstration and modeling of unipolar-carrier-conduction GaN Schottky-pn junction diode with low turn-on voltage
Lijian Guo(郭力健), Weizong Xu(徐尉宗), Qi Wei(位祺), Xinghua Liu(刘兴华), Tianyi Li(李天义), Dong Zhou(周东), Fangfang Ren(任芳芳), Dunjun Chen(陈敦军), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海). Chin. Phys. B, 2023, 32(2): 027302.
[2] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[3] Fast-switching SOI-LIGBT with compound dielectric buried layer and assistant-depletion trench
Chunzao Wang(王春早), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2022, 31(4): 047304.
[4] Lateral β-Ga2O3 Schottky barrier diode fabricated on (-201) single crystal substrate and its temperature-dependent current-voltage characteristics
Pei-Pei Ma(马培培), Jun Zheng(郑军), Ya-Bao Zhang(张亚宝), Xiang-Quan Liu(刘香全), Zhi Liu(刘智), Yu-Hua Zuo(左玉华), Chun-Lai Xue(薛春来), and Bu-Wen Cheng(成步文). Chin. Phys. B, 2022, 31(4): 047302.
[5] Modeling of high permittivity insulator structure with interface charge by charge compensation
Zhi-Gang Wang(汪志刚), Yun-Feng Gong(龚云峰), and Zhuang Liu(刘壮). Chin. Phys. B, 2022, 31(2): 028501.
[6] Terminal-optimized 700-V LDMOS with improved breakdown voltage and ESD robustness
Jie Xu(许杰), Nai-Long He(何乃龙), Hai-Lian Liang(梁海莲), Sen Zhang(张森), Yu-De Jiang(姜玉德), and Xiao-Feng Gu(顾晓峰). Chin. Phys. B, 2021, 30(6): 067303.
[7] Design and simulation of AlN-based vertical Schottky barrier diodes
Chun-Xu Su(苏春旭), Wei Wen(温暐), Wu-Xiong Fei(费武雄), Wei Mao(毛维), Jia-Jie Chen(陈佳杰), Wei-Hang Zhang(张苇杭), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(6): 067305.
[8] A super-junction SOI-LDMOS with low resistance electron channel
Wei-Zhong Chen(陈伟中), Yuan-Xi Huang(黄元熙), Yao Huang(黄垚), Yi Huang(黄义), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2021, 30(5): 057303.
[9] Improved 4H-SiC UMOSFET with super-junction shield region
Pei Shen(沈培), Ying Wang(王颖), Xing-Ji Li(李兴冀), Jian-Qun Yang(杨剑群), Cheng-Hao Yu(于成浩), and Fei Cao(曹菲). Chin. Phys. B, 2021, 30(5): 058502.
[10] Novel Si/SiC heterojunction lateral double-diffused metal-oxide semiconductor field-effect transistor with p-type buried layer breaking silicon limit
Baoxing Duan(段宝兴), Xin Huang(黄鑫), Haitao Song (宋海涛), Yandong Wang(王彦东), and Yintang Yang(杨银堂). Chin. Phys. B, 2021, 30(4): 048503.
[11] Novel fast-switching LIGBT with P-buried layer and partial SOI
Haoran Wang(王浩然), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2021, 30(2): 027302.
[12] Simulation study of high voltage GaN MISFETs with embedded PN junction
Xin-Xing Fei(费新星), Ying Wang(王颖), Xin Luo(罗昕), Cheng-Hao Yu(于成浩). Chin. Phys. B, 2020, 29(8): 080701.
[13] Variable-K double trenches SOI LDMOS with high-concentration P-pillar
Lijuan Wu(吴丽娟), Lin Zhu(朱琳), Xing Chen(陈星). Chin. Phys. B, 2020, 29(5): 057701.
[14] Numerical and analytical investigations for the SOI LDMOS with alternated high-k dielectric and step doped silicon pillars
Jia-Fei Yao(姚佳飞), Yu-Feng Guo(郭宇锋), Zhen-Yu Zhang(张振宇), Ke-Meng Yang(杨可萌), Mao-Lin Zhang(张茂林), Tian Xia(夏天). Chin. Phys. B, 2020, 29(3): 038503.
[15] Breakdown voltage enhancement in GaN channel and AlGaN channel HEMTs using large gate metal height
Zhong-Xu Wang(王中旭), Lin Du(杜林), Jun-Wei Liu(刘俊伟), Ying Wang(王颖), Yun Jiang(江芸), Si-Wei Ji(季思蔚), Shi-Wei Dong(董士伟), Wei-Wei Chen(陈伟伟), Xiao-Hong Tan(谭骁洪), Jin-Long Li(李金龙), Xiao-Jun Li(李小军), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(2): 027301.
No Suggested Reading articles found!