Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 067303    DOI: 10.1088/1674-1056/abdda7
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Terminal-optimized 700-V LDMOS with improved breakdown voltage and ESD robustness

Jie Xu(许杰)1, Nai-Long He(何乃龙)2, Hai-Lian Liang(梁海莲)1, Sen Zhang(张森)2, Yu-De Jiang(姜玉德)1, and Xiao-Feng Gu(顾晓峰)1,†
1 Engineering Research Center of IoT Technology Applications(Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122, China;
2 Technology Development Department, CSMC Technologies Corporation, Wuxi 214061, China
Abstract  A novel terminal-optimized triple RESURF LDMOS (TOTR-LDMOS) is proposed and verified in a 0.25-μ bipolar-CMOS-DMOS (BCD) process. By introducing a low concentration region to the terminal region, the surface electric field of the TOTR-LDMOS decreases, helping to improve the breakdown voltage (BV) and electrostatic discharge (ESD) robustness. Both traditional LDMOS and TOTR-LDMOS are fabricated and investigated by transmission line pulse (TLP) tests, direct current (DC) tests, and TCAD simulations. The results show that comparing with the traditional LDMOS, the BV of the TOTR-LDMOS increases from 755 V to 817 V without affecting the specific on-resistance (Ron,sp) of 6.99 Ω·mm2. Meanwhile, the ESD robustness of the TOTR-LDMOS increases by 147%. The TOTR-LDMOS exhibits an excellent performance among the present 700-V LDMOS devices.
Keywords:  lateral double-diffused MOSFET (LDMOS)      terminal-optimization      breakdown voltage      electrostatic discharge  
Received:  28 October 2020      Revised:  07 January 2021      Accepted manuscript online:  20 January 2021
PACS:  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.30.Tv (Field effect devices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61504049), the China Postdoctoral Science Foundation (Grant No. 2016M600361), and the Fundamental Research Funds for the Central Universities, China (Grant No. JUSRP51510).
Corresponding Authors:  Xiao-Feng Gu     E-mail:  xgu@jiangnan.edu.cn

Cite this article: 

Jie Xu(许杰), Nai-Long He(何乃龙), Hai-Lian Liang(梁海莲), Sen Zhang(张森), Yu-De Jiang(姜玉德), and Xiao-Feng Gu(顾晓峰) Terminal-optimized 700-V LDMOS with improved breakdown voltage and ESD robustness 2021 Chin. Phys. B 30 067303

[1] Liu S Y, Li S, Li Z C, Sun W F, Su W, Ma S L, Lin F, Liu Y W and Sun G P 2017 IEEE Trans. Dev. Mater. Reliab. 17 780
[2] Yao J F, Guo Y F, Zhang Z Y, Yang K M, Zhang M L and Xia T 2020 Chin. Phys. B 29 038503
[3] Li P C, Luo X R, Luo Y C, Zhou K, Shi X L, Zhang Y H and Lv M S 2015 Chin. Phys. B 24 047304
[4] Komatsu K, Takahashi K, Sakurai T, Ikimura T, Sakai M, Kimura K and Matsuoka F 2016 IEEE 28th International Symposium on Power Semiconductor Devices & IC's (ISPSD), June 12-16, 2016, Prague, Czech, p. 179
[5] Lee S H, Jeon C K, Moon J W and Choi Y C 2008 IEEE 20th International Symposium on Power Semiconductor Devices & IC's (ISPSD), May 18-22, 2008, Orlando, USA, p. 141
[6] Chen S L, Wu P L and Lin P L 2019 IEEE Electron Dev. Lett. 40 597
[7] Malobabic S, Salcedo J A, Hajjar J J and Liou J J 2012 IEEE Electron Dev. Lett. 33 1595
[8] Ma F, Zhang B, Han Y, Zheng J F, Song B, Dong S R and Liang H L 2013 IEEE Electron Dev. Lett. 34 1178
[9] Qiao M, Yu L L, Dai G, Ye K, Wang Y R, Li Z J and Zhang B 2015 IEEE Trans. Electron Dev. 62 4121
[10] Iqbal M M H, Udrea F and Napoli E 2009 IEEE 21st International Symposium on Power Semiconductor Devices & IC's (ISPSD), June 14-18, 2009, Barcelona, Spain, p. 247
[11] Cheng S K, Fang D, Qiao M, Zhang S, Zhang G S, Gu Y, He Y T, Zhou X, Qi Z, Li Z J and Zhang B 2017 IEEE 29th International Symposium on Power Semiconductor Devices & IC's (ISPSD), May 28-June 1, 2017, Sapporo, Japan, p. 323
[12] Kim S, Kim J and Prosack H 2012 IEEE 24th International Symposium on Power Semiconductor Devices & IC's (ISPSD), June 3-7, 2012, Bruges, Belgium, p. 185
[13] Qiao M, Yuan Z Y, Li Y, Zhou X, Jin F, Yang J Y, Cai Y, Li Z J and Zhang B 2020 IEEE 32nd International Symposium on Power Semiconductor Devices & IC's (ISPSD), September 13-18, 2020, Vienna, Austria, p. 415
[14] Qiao M, Li Y F, Zhou X, Li Z J and Zhang B 2014 IEEE Electron Dev. Lett. 35 774
[1] Dynamic electrostatic-discharge path investigation relied on different impact energies in metal-oxide-semiconductor circuits
Tian-Tian Xie(谢田田), Jun Wang(王俊), Fei-Bo Du(杜飞波), Yang Yu(郁扬), Yan-Fei Cai(蔡燕飞), Er-Yuan Feng(冯二媛), Fei Hou(侯飞), and Zhi-Wei Liu(刘志伟). Chin. Phys. B, 2023, 32(4): 048501.
[2] Enhancement of holding voltage by a modified low-voltage trigger silicon-controlled rectifier structure for electrostatic discharge protection
Yuankang Chen(陈远康), Yuanliang Zhou(周远良), Jie Jiang(蒋杰), Tingke Rao(饶庭柯), Wugang Liao(廖武刚), and Junjie Liu(刘俊杰). Chin. Phys. B, 2023, 32(2): 028502.
[3] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[4] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[5] Lateral β-Ga2O3 Schottky barrier diode fabricated on (-201) single crystal substrate and its temperature-dependent current-voltage characteristics
Pei-Pei Ma(马培培), Jun Zheng(郑军), Ya-Bao Zhang(张亚宝), Xiang-Quan Liu(刘香全), Zhi Liu(刘智), Yu-Hua Zuo(左玉华), Chun-Lai Xue(薛春来), and Bu-Wen Cheng(成步文). Chin. Phys. B, 2022, 31(4): 047302.
[6] Fast-switching SOI-LIGBT with compound dielectric buried layer and assistant-depletion trench
Chunzao Wang(王春早), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2022, 31(4): 047304.
[7] Modeling of high permittivity insulator structure with interface charge by charge compensation
Zhi-Gang Wang(汪志刚), Yun-Feng Gong(龚云峰), and Zhuang Liu(刘壮). Chin. Phys. B, 2022, 31(2): 028501.
[8] Design and investigation of novel ultra-high-voltage junction field-effect transistor embedded with NPN
Xi-Kun Feng(冯希昆), Xiao-Feng Gu(顾晓峰), Qin-Ling Ma(马琴玲), Yan-Ni Yang(杨燕妮), and Hai-Lian Liang(梁海莲). Chin. Phys. B, 2021, 30(7): 078502.
[9] Design and simulation of AlN-based vertical Schottky barrier diodes
Chun-Xu Su(苏春旭), Wei Wen(温暐), Wu-Xiong Fei(费武雄), Wei Mao(毛维), Jia-Jie Chen(陈佳杰), Wei-Hang Zhang(张苇杭), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(6): 067305.
[10] A super-junction SOI-LDMOS with low resistance electron channel
Wei-Zhong Chen(陈伟中), Yuan-Xi Huang(黄元熙), Yao Huang(黄垚), Yi Huang(黄义), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2021, 30(5): 057303.
[11] Improved 4H-SiC UMOSFET with super-junction shield region
Pei Shen(沈培), Ying Wang(王颖), Xing-Ji Li(李兴冀), Jian-Qun Yang(杨剑群), Cheng-Hao Yu(于成浩), and Fei Cao(曹菲). Chin. Phys. B, 2021, 30(5): 058502.
[12] Novel Si/SiC heterojunction lateral double-diffused metal-oxide semiconductor field-effect transistor with p-type buried layer breaking silicon limit
Baoxing Duan(段宝兴), Xin Huang(黄鑫), Haitao Song (宋海涛), Yandong Wang(王彦东), and Yintang Yang(杨银堂). Chin. Phys. B, 2021, 30(4): 048503.
[13] Novel fast-switching LIGBT with P-buried layer and partial SOI
Haoran Wang(王浩然), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2021, 30(2): 027302.
[14] Enhanced gated-diode-triggered silicon-controlled rectifier for robust electrostatic discharge (ESD) protection applications
Wenqiang Song(宋文强), Fei Hou(侯飞), Feibo Du(杜飞波), Zhiwei Liu(刘志伟), Juin J. Liou(刘俊杰). Chin. Phys. B, 2020, 29(9): 098502.
[15] Simulation study of high voltage GaN MISFETs with embedded PN junction
Xin-Xing Fei(费新星), Ying Wang(王颖), Xin Luo(罗昕), Cheng-Hao Yu(于成浩). Chin. Phys. B, 2020, 29(8): 080701.
No Suggested Reading articles found!