Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(4): 047304    DOI: 10.1088/1674-1056/ac29ac
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Fast-switching SOI-LIGBT with compound dielectric buried layer and assistant-depletion trench

Chunzao Wang(王春早)1,2, Baoxing Duan(段宝兴)1,†, Licheng Sun(孙李诚)1, and Yintang Yang(杨银堂)1
1 Key Laboratory of the Ministry of Education for Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China;
2 Department of Physics and Electronic Information, Shaoxing University, Shaoxing 312000, China
Abstract  A lateral insulated gate bipolar transistor (LIGBT) based on silicon-on-insulator (SOI) structure is proposed and investigated. This device features a compound dielectric buried layer (CDBL) and an assistant-depletion trench (ADT). The CDBL is employed to introduce two high electric field peaks that optimize the electric field distributions and that, under the same breakdown voltage (BV) condition, allow the CDBL to acquire a drift region of shorter length and a smaller number of stored carriers. Reducing their numbers helps in fast-switching. Furthermore, the ADT contributes to the rapid extraction of the stored carriers from the drift region as well as the formation of an additional heat-flow channel. The simulation results show that the BV of the proposed LIGBT is increased by 113% compared with the conventional SOI LIGBT of the same length LD. Contrastingly, the length of the drift region of the proposed device (11.2 μ) is about one third that of a traditional device (33 μ) with the same BV of 141 V. Therefore, the turn-off loss (EOFF) of the CDBL SOI LIGBT is decreased by 88.7% compared with a conventional SOI LIGBT when the forward voltage drop (VF) is 1.64 V. Moreover, the short-circuit failure time of the proposed device is 45% longer than that of the conventional SOI LIGBT. Therefor, the proposed CDBL SOI LIGBT exhibits a better VF-EOFF tradeoff and an improved short-circuit robustness.
Keywords:  lateral insulated gate bipolar transistor      breakdown voltage      electric field modulation      turn-off loss  
Received:  15 May 2021      Revised:  23 September 2021      Accepted manuscript online:  24 September 2021
PACS:  73.40.Ty (Semiconductor-insulator-semiconductor structures)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.30.Tv (Field effect devices)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2015CB351906) and Science Foundation for Distinguished Young Scholars of Shaanxi Province, China (Grant No. 2018JC-017).
Corresponding Authors:  Baoxing Duan     E-mail:  bxduan@163.com

Cite this article: 

Chunzao Wang(王春早), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂) Fast-switching SOI-LIGBT with compound dielectric buried layer and assistant-depletion trench 2022 Chin. Phys. B 31 047304

[1] Baliga B J 2008 Fundamentals of power semiconductor devices (New York:Spring-Science) pp. 737-739
[2] Disney D, Letavic T, Trajkovic T, Terashima T and Nakagawa A 2017 IEEE Trans. Electron Dev. 64 659
[3] Trajkovic T, Udugampola N, Pathirana V, Camuso G, Udrea F and Amaratunga G A J 2013 Proceedings of the 25th International Symposium on Power Semiconductor Devices and ICs, May 26-30,2013, kanazawa, Japan, p. 401
[4] Takahashi S, Nakagawa A, Ashida Y, Shiraki S and Tokura N 2012 Proceedings of the 24th International Symposium on Power Semiconductor Devices and ICs, June 3-7, 2012, Bruges, Belgium, p. 393
[5] Takahashi T, Tomomatsu Y and Sato K 2008 Proceedings of the 20th International Symposium on Power Semiconductor Devices and ICs, May 18-22, 2008, Orlando, USA, p. 72
[6] Kamibaba R, Konishi K, Fukada Y, Narazaki A and Tarutani M 2015 Proceedings of the 24th International Symposium on Power Semiconductor Devices and ICs, May 10-14, 2015, Hong Kong, China, p. 29
[7] David W G, Sweet M, Vershinin K, Hardikar S and Sankaka E M Narayanan 2005 IEEE Trans. Electron Dev. 52 2482
[8] Luo X R, Yang Y, Sun T, Wei J, Fan D, Deng G Q, Zhang B and Li Z J 2019 IEEE Trans. Electron Dev. 66 1390
[9] Duan B X, Sun L C and Yang Y T 2019 IEEE Electron Device Lett. 40 63
[10] Sun L C, Duan B X, Wang Y D and Yang Y T 2019 Proceedings of the 31th International Symposium on Power Semiconductor Devices and ICs, May 19-23, 2019, Shanghai, China, p. 379
[11] Eicher S, Ogura T, Sugiyama K, Ninomiya H and Ohashi H 1998 Proceedings of the 10th International Symposium on Power Semiconductor Devices and ICs, June 3-6,1998, Kyoto, Japan, p. 39
[12] Tadokoro C, Kaneda M, Takano K, Kusunoki S, Minato T, Yahiro J and Hatade K 2011 Proceedings of the 23th International Symposium on Power Semiconductor Devices and ICs, May 23-26, 2011, San Diego, USA, p. 136
[13] Lu D H, Jimbo S and Fujishima N 2005 IEEE International Electron Devices Meeting, December 5-5, 2005, Washington, USA, p. 105
[14] Zhang L, Zhu J, Zhao M N, Liu S Y, Sun W F and Shi L X 2017 IEEE Tran. Electron Dev. 64 3756
[15] Zhang L, Zhu J, Sun W F, Zhao M N, Chen J J, Huang X Q, Shi L X, Chen J and Ding D S 2017 IEEE Tran. Electron Dev. 64 3282
[16] Luo X R, Wang Y G, Deng H and Florin Udrea 2010 Chin. Phys. B 19 077306
[17] Wang H R, Duan B X, Sun L C and Yang Y T 2021 Chin. Phys. B 30 027302
[18] Jurczak M, Skotnicki T, Paoli M, Tormen B, Regolini J L, Morin C, Schiltz A, Martins J, Pantel R and Galvier J 1999 Symposium on VLSI Technology. Digest of Technical Papers, June 14-16, 1999, Kyoto, Japan, p. 29
[19] Anand M B, Masaki Y and Hideki S 1997 IEEE Tran. Electron Dev. 44 1965
[20] Merchant S 1999 IEEE Tran. On Electron Dev. 46 1264
[21] Duan B X, Xing J Y, Dong Z M and Yang Y T 2020 IEEE J. Electron Dev. Soc. 8 686
[22] Anand M B, Yamada M and Shibata H 1996 Symposium on VLSI Technology. Digest of Technical Papers, June 11-13, 1996, Honolulu, USA, p. 82
[1] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[2] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[3] Lateral β-Ga2O3 Schottky barrier diode fabricated on (-201) single crystal substrate and its temperature-dependent current-voltage characteristics
Pei-Pei Ma(马培培), Jun Zheng(郑军), Ya-Bao Zhang(张亚宝), Xiang-Quan Liu(刘香全), Zhi Liu(刘智), Yu-Hua Zuo(左玉华), Chun-Lai Xue(薛春来), and Bu-Wen Cheng(成步文). Chin. Phys. B, 2022, 31(4): 047302.
[4] Modeling of high permittivity insulator structure with interface charge by charge compensation
Zhi-Gang Wang(汪志刚), Yun-Feng Gong(龚云峰), and Zhuang Liu(刘壮). Chin. Phys. B, 2022, 31(2): 028501.
[5] Terminal-optimized 700-V LDMOS with improved breakdown voltage and ESD robustness
Jie Xu(许杰), Nai-Long He(何乃龙), Hai-Lian Liang(梁海莲), Sen Zhang(张森), Yu-De Jiang(姜玉德), and Xiao-Feng Gu(顾晓峰). Chin. Phys. B, 2021, 30(6): 067303.
[6] Design and simulation of AlN-based vertical Schottky barrier diodes
Chun-Xu Su(苏春旭), Wei Wen(温暐), Wu-Xiong Fei(费武雄), Wei Mao(毛维), Jia-Jie Chen(陈佳杰), Wei-Hang Zhang(张苇杭), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(6): 067305.
[7] A super-junction SOI-LDMOS with low resistance electron channel
Wei-Zhong Chen(陈伟中), Yuan-Xi Huang(黄元熙), Yao Huang(黄垚), Yi Huang(黄义), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2021, 30(5): 057303.
[8] Improved 4H-SiC UMOSFET with super-junction shield region
Pei Shen(沈培), Ying Wang(王颖), Xing-Ji Li(李兴冀), Jian-Qun Yang(杨剑群), Cheng-Hao Yu(于成浩), and Fei Cao(曹菲). Chin. Phys. B, 2021, 30(5): 058502.
[9] Novel Si/SiC heterojunction lateral double-diffused metal-oxide semiconductor field-effect transistor with p-type buried layer breaking silicon limit
Baoxing Duan(段宝兴), Xin Huang(黄鑫), Haitao Song (宋海涛), Yandong Wang(王彦东), and Yintang Yang(杨银堂). Chin. Phys. B, 2021, 30(4): 048503.
[10] Novel fast-switching LIGBT with P-buried layer and partial SOI
Haoran Wang(王浩然), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2021, 30(2): 027302.
[11] Simulation study of high voltage GaN MISFETs with embedded PN junction
Xin-Xing Fei(费新星), Ying Wang(王颖), Xin Luo(罗昕), Cheng-Hao Yu(于成浩). Chin. Phys. B, 2020, 29(8): 080701.
[12] Variable-K double trenches SOI LDMOS with high-concentration P-pillar
Lijuan Wu(吴丽娟), Lin Zhu(朱琳), Xing Chen(陈星). Chin. Phys. B, 2020, 29(5): 057701.
[13] Numerical and analytical investigations for the SOI LDMOS with alternated high-k dielectric and step doped silicon pillars
Jia-Fei Yao(姚佳飞), Yu-Feng Guo(郭宇锋), Zhen-Yu Zhang(张振宇), Ke-Meng Yang(杨可萌), Mao-Lin Zhang(张茂林), Tian Xia(夏天). Chin. Phys. B, 2020, 29(3): 038503.
[14] Breakdown voltage enhancement in GaN channel and AlGaN channel HEMTs using large gate metal height
Zhong-Xu Wang(王中旭), Lin Du(杜林), Jun-Wei Liu(刘俊伟), Ying Wang(王颖), Yun Jiang(江芸), Si-Wei Ji(季思蔚), Shi-Wei Dong(董士伟), Wei-Wei Chen(陈伟伟), Xiao-Hong Tan(谭骁洪), Jin-Long Li(李金龙), Xiao-Jun Li(李小军), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(2): 027301.
[15] A novel high breakdown voltage and high switching speed GaN HEMT with p-GaN gate and hybrid AlGaN buffer layer for power electronics applications
Yong Liu(刘勇), Qi Yu(于奇), and Jiang-Feng Du(杜江锋). Chin. Phys. B, 2020, 29(12): 127701.
No Suggested Reading articles found!