Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(2): 027302    DOI: 10.1088/1674-1056/abcf3e

Novel fast-switching LIGBT with P-buried layer and partial SOI

Haoran Wang(王浩然), Baoxing Duan(段宝兴)†, Licheng Sun(孙李诚), and Yintang Yang(杨银堂)
Key Laboratory of the Ministry of Education for Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China
Abstract  A novel silicon-on-insulator lateral insulated gate bipolar transistor (SOI LIGBT) is proposed in this paper. The proposed device has a P-type buried layer and a partial-SOI layer, which is called the BPSOI-LIGBT. Due to the electric field modulation effect generated by the P-type buried layer and the partial-SOI layer, the proposed structure generates two new peaks in the surface electric field distribution, which can achieve a smaller device size with a higher breakdown voltage. The smaller size of the device is beneficial to the fast switching. The simulation shows that under the same size, the breakdown voltage of the BPSOI LIGBT is 26% higher than that of the conventional partial-SOI LIGBT (PSOI LIGBT), and 84% higher than the traditional SOI LIGBT. When the forward voltage drop is 2.05 V, the turn-off time of the BPSOI LIGBT is 71% shorter than that of the traditional SOI LIGBT. Therefore, the proposed BPSOI LIGBT has a better forward voltage drop and turn-off time trade-off than the traditional SOI LIGBT. In addition, the BPSOI LIGBT effectively relieves the self-heating effect of the traditional SOI LIGBT.
Keywords:  P-type buried layer      breakdown voltage      electric field modulation      turn-off time  
Received:  13 August 2020      Revised:  11 October 2020      Accepted manuscript online:  01 December 2020
PACS:  73.40.Ty (Semiconductor-insulator-semiconductor structures)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.30.Tv (Field effect devices)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2015CB351906) and the Science Foundation for Distinguished Young Scholars of Shaanxi Province, China (Grant No. 2018JC-017).
Corresponding Authors:  Corresponding author. E-mail:   

Cite this article: 

Haoran Wang(王浩然), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂) Novel fast-switching LIGBT with P-buried layer and partial SOI 2021 Chin. Phys. B 30 027302

1 Sakano J, Shirakawa S, Hara K, Yabuki S, Wada S, Noguchi J and Wada M2010 Proc. 22th ISPSD(Hiroshima) pp. 83-86
2 Baliga B J2008 Fundamentals of Power Semiconductor Devices(New York: Springer-Science)
3 Zhu J, Zhang L, Sun W F, Chen M, Zhou F, Zhao M N, Shi L X, Gu Y,Zhang S 2016 IEEE Trans. Electron Dev. 63 2003
4 Zhu J, Sun W F, Zhang L and Du Y2015 Proc. 27th ISPSDn pp. 169-172
5 Jea-Pierre Colinge1997 Silicon-on-Insulator Technology: Materials to VLSI(US: Springer-Verlag)
6 Hara K, Wada S, SakanoJ, Oda T, Sakurai K, Yamashita H and Utsumi T2014 Proc. 26th ISPSD, pp. 418-421
7 Zhang L, Zhu J, Sun WF, Zhao M N, Chen J J, Huang X Q, Shi L X, Chen J and Ding D S 2017 IEEE Trans. Electron Dev. 64 3282
8 Zhang L, Zhu J, Sun W F, Chen M, Huang C, Zhou F, Gu Y, Zhang S and Su W2016 Proc. 28th ISPSD pp. 439-442
9 Terashima T and Moritani J2005 Proc. IEEE 17th ISPSD, May 2005, pp. 91-94
10 Pathirana V, Udugampola N, Trajkovic T and Udrea F 2018 IEEE Electron Dev. Lett. 39 866
11 Hu H, Kong M F, Yi B and Chen X B2020 IEEE Trans. Electron Dev. 67 1
12 Duan BX, Yuan S, Cao Z and Yang Y T 2014 IEEE Electron Dev. Lett. 35 1115
13 Park J M, Grasser T, Kosina H and Selberherr S 2003 Solid-State Electron. 47 275
[1] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[2] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[3] Lateral β-Ga2O3 Schottky barrier diode fabricated on (-201) single crystal substrate and its temperature-dependent current-voltage characteristics
Pei-Pei Ma(马培培), Jun Zheng(郑军), Ya-Bao Zhang(张亚宝), Xiang-Quan Liu(刘香全), Zhi Liu(刘智), Yu-Hua Zuo(左玉华), Chun-Lai Xue(薛春来), and Bu-Wen Cheng(成步文). Chin. Phys. B, 2022, 31(4): 047302.
[4] Fast-switching SOI-LIGBT with compound dielectric buried layer and assistant-depletion trench
Chunzao Wang(王春早), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2022, 31(4): 047304.
[5] Modeling of high permittivity insulator structure with interface charge by charge compensation
Zhi-Gang Wang(汪志刚), Yun-Feng Gong(龚云峰), and Zhuang Liu(刘壮). Chin. Phys. B, 2022, 31(2): 028501.
[6] Terminal-optimized 700-V LDMOS with improved breakdown voltage and ESD robustness
Jie Xu(许杰), Nai-Long He(何乃龙), Hai-Lian Liang(梁海莲), Sen Zhang(张森), Yu-De Jiang(姜玉德), and Xiao-Feng Gu(顾晓峰). Chin. Phys. B, 2021, 30(6): 067303.
[7] Design and simulation of AlN-based vertical Schottky barrier diodes
Chun-Xu Su(苏春旭), Wei Wen(温暐), Wu-Xiong Fei(费武雄), Wei Mao(毛维), Jia-Jie Chen(陈佳杰), Wei-Hang Zhang(张苇杭), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(6): 067305.
[8] A super-junction SOI-LDMOS with low resistance electron channel
Wei-Zhong Chen(陈伟中), Yuan-Xi Huang(黄元熙), Yao Huang(黄垚), Yi Huang(黄义), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2021, 30(5): 057303.
[9] Improved 4H-SiC UMOSFET with super-junction shield region
Pei Shen(沈培), Ying Wang(王颖), Xing-Ji Li(李兴冀), Jian-Qun Yang(杨剑群), Cheng-Hao Yu(于成浩), and Fei Cao(曹菲). Chin. Phys. B, 2021, 30(5): 058502.
[10] Novel Si/SiC heterojunction lateral double-diffused metal-oxide semiconductor field-effect transistor with p-type buried layer breaking silicon limit
Baoxing Duan(段宝兴), Xin Huang(黄鑫), Haitao Song (宋海涛), Yandong Wang(王彦东), and Yintang Yang(杨银堂). Chin. Phys. B, 2021, 30(4): 048503.
[11] Simulation study of high voltage GaN MISFETs with embedded PN junction
Xin-Xing Fei(费新星), Ying Wang(王颖), Xin Luo(罗昕), Cheng-Hao Yu(于成浩). Chin. Phys. B, 2020, 29(8): 080701.
[12] Variable-K double trenches SOI LDMOS with high-concentration P-pillar
Lijuan Wu(吴丽娟), Lin Zhu(朱琳), Xing Chen(陈星). Chin. Phys. B, 2020, 29(5): 057701.
[13] Numerical and analytical investigations for the SOI LDMOS with alternated high-k dielectric and step doped silicon pillars
Jia-Fei Yao(姚佳飞), Yu-Feng Guo(郭宇锋), Zhen-Yu Zhang(张振宇), Ke-Meng Yang(杨可萌), Mao-Lin Zhang(张茂林), Tian Xia(夏天). Chin. Phys. B, 2020, 29(3): 038503.
[14] Breakdown voltage enhancement in GaN channel and AlGaN channel HEMTs using large gate metal height
Zhong-Xu Wang(王中旭), Lin Du(杜林), Jun-Wei Liu(刘俊伟), Ying Wang(王颖), Yun Jiang(江芸), Si-Wei Ji(季思蔚), Shi-Wei Dong(董士伟), Wei-Wei Chen(陈伟伟), Xiao-Hong Tan(谭骁洪), Jin-Long Li(李金龙), Xiao-Jun Li(李小军), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(2): 027301.
[15] A novel high breakdown voltage and high switching speed GaN HEMT with p-GaN gate and hybrid AlGaN buffer layer for power electronics applications
Yong Liu(刘勇), Qi Yu(于奇), and Jiang-Feng Du(杜江锋). Chin. Phys. B, 2020, 29(12): 127701.
No Suggested Reading articles found!