Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(4): 047302    DOI: 10.1088/1674-1056/ac2729

Lateral β-Ga2O3 Schottky barrier diode fabricated on (-201) single crystal substrate and its temperature-dependent current-voltage characteristics

Pei-Pei Ma(马培培)1,2, Jun Zheng(郑军)1,2,†, Ya-Bao Zhang(张亚宝)1,2, Xiang-Quan Liu(刘香全)1,2, Zhi Liu(刘智)1,2, Yu-Hua Zuo(左玉华)1,2, Chun-Lai Xue(薛春来)1,2, and Bu-Wen Cheng(成步文)1,2
1 State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  Lateral β-Ga2O3 Schottky barrier diodes (SBDs) each are fabricated on an unintentionally doped (-201) n-type β-Ga2O3 single crystal substrate by designing L-shaped electrodes. By introducing sidewall electrodes on both sides of the conductive channel, the SBD demonstrates a high current density of 223 mA/mm and low specific on-resistance of 4.7 mΩ ·cm2. Temperature-dependent performance is studied and the Schottky barrier height is extracted to be in a range between 1.3 eV and 1.35 eV at temperatures ranging from 20 ℃ to 150 ℃. These results suggest that the lateral β-Ga2O3 SBD has a tremendous potential for future power electronic applications.
Keywords:  β -Ga2O3      Schottky barrier diodes      rectifying ability      breakdown voltage  
Received:  02 July 2021      Revised:  08 September 2021      Accepted manuscript online:  16 September 2021
PACS:  73.40.Mr (Semiconductor-electrolyte contacts)  
  84.30.Jc (Power electronics; power supply circuits)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.30.Kk (Junction diodes)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFB2200500), the National Natural Science Foundation of China (Grant Nos. 62050073, 62090054, and 61975196), and the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. QYZDY-SSW-JSC022).
Corresponding Authors:  Jun Zheng     E-mail:

Cite this article: 

Pei-Pei Ma(马培培), Jun Zheng(郑军), Ya-Bao Zhang(张亚宝), Xiang-Quan Liu(刘香全), Zhi Liu(刘智), Yu-Hua Zuo(左玉华), Chun-Lai Xue(薛春来), and Bu-Wen Cheng(成步文) Lateral β-Ga2O3 Schottky barrier diode fabricated on (-201) single crystal substrate and its temperature-dependent current-voltage characteristics 2022 Chin. Phys. B 31 047302

[1] Millan J, Godignon P, Perpina X, Perez-Tomas A and Rebollo J 2014 IEEE Trans. Power Electron. 29 2155
[2] Qin Y, Long S B, Dong H, He Q M, Jian G Z, Zhang Y, Hou X H, Tan P J, Zhang Z F, Lv H B, Liu Q and Liu M 2019 Chin. Phys. B 28 018501
[3] Liu Z, Li P G, Zhi Y S, Wang X L, Chu X L and Tang W H 2019 Chin. Phys. B 28 017105
[4] Pearton S J, Yang J C, Cary P H, Ren F, Kim J, Tadjer M J and Mastro M A 2018 Appl. Phys. Rev. 5 011301
[5] Zhang H P, Yuan L, Tang X Y, Hu J C, Sun J W, Zhang Y M, Zhang Y M and Jia R X 2020 IEEE Trans. Power Electron. 35 5157
[6] Dong H, Xue H W, He Q M, Qin Y, Jian G Z, Long S B and Liu M 2019 J. Semicond. 40 011802
[7] Galazka Z, Irmscher K, Schewski R, Hanke I M, Pietsch M, Ganschow S, Klimm D, Dittmar A, Fiedler A, Schroeder T and Bickermann M 2020 J. Cryst. Growth 529 125297
[8] Galazka Z, Irmscher K, Uecker R, Bertram R, Pietsch M, Kwasniewski A, Naumann M, Schulz T, Schewski R, Klimm D and Bickermann M 2014 J. Cryst. Growth 404 184
[9] Mu W X, Jia Z T, Yin Y R, Hu Q Q, Li Y, Wu B Y, Zhang J and Tao X T 2017 J. Alloys Compd. 714 453
[10] Mohamed H F, Xia C T, Sai Q L, Cui H Y, Pan M Y and Qi H J 2019 J. Semicond. 40 011801
[11] Xu Y, Chen X H, Cheng L, Ren F F, Zhou J J, Bai S, Lu H, Gu S L, Zhang R, Zheng Y D and Ye J D 2019 Chin. Phys. B 28 038503
[12] Wang H, Jiang L L, Lin X P, Lei S Q and Yu H Y 2018 Chin. Phys. B 27 127302
[13] Sharma S, Zeng K, Saha S and Singisetti U 2020 IEEE Electron Dev. Lett. 41 836
[14] Lv Y J, Liu H Y, Zhou X Y, Wang Y G, Song X B, Cai Y C, Yan Q L, Wang C L, Liang S X, Zhang J C, Feng Z H, Zhou H, Cai S J and Hao Y 2020 IEEE Electron Dev. Lett. 41 537
[15] Dang K, Zhang J C, Zhou H, Huang S, Zhang T, Bian Z K, Zhang Y C, Wang X H, Zhao S L, Wei K and Hao Y 2020 IEEE Trans. Power Electron. 35 2247
[16] Lu Y, Zhou F, Xu W, Wang D, Xia Y, Zhu Y, Pan D, Ren F, Zhou D, Ye J, Chen D, Zhang R, Zheng Y and Lu H 2020 Appl. Phys. Express 13 096502
[17] Higashiwaki M, Konishi K, Sasaki K, Goto K, Nomura K, Thieu Q T, Togashi R, Murakami H, Kumagai Y, Monemar B, Koukitu A, Kuramata A and Yamakoshi S 2016 Appl. Phys. Lett. 108 133503
[18] He Q M, Mu W X, Dong H, Long S B, Jia Z T, Lv H B, Liu Q, Tang M H, Tao X T and Liu M 2017 Appl. Phys. Lett. 110 093503
[19] Yang J C, Ahn S, Ren F, Pearton S J, Jang S and Kuramata A 2017 IEEE Electron Dev. Lett. 38 906
[20] Jayawardena A, Ahyi A C and Dhar S 2016 Semicond. Sci. Technol. 31 115002
[21] Hu Z Z, Lv Y J, Zhao C Y, Feng Q, Feng Z Q, Dang K, Tian X S, Zhang Y C, Ning J, Zhou H, Kang X W, Zhang J C and Hao Y 2020 IEEE Electron Dev. Lett. 41 441
[22] Allen N, Xiao M, Yan X D, Sasaki K, Tadjer M J, Ma J H, Zhang R Z, Wang H and Zhang Y H 2019 IEEE Electron Dev. Lett. 40 1399
[23] Li W S, Nomoto K, Hu Z Y, Jena D and Xing H G 2020 IEEE Electron Dev. Lett. 41 107
[24] Hu Z Z, Zhou H, Feng Q, Zhang J C, Zhang C F, Dang K, Cai Y C, Feng Z Q, Gao Y Y, Kang X W and Hao Y 2018 IEEE Electron Dev. Lett. 39 1564
[25] Hu Z Z, Zhou H, Dang K, Cai Y C, Feng Z Q, Gao Y Y, Feng Q, Zhang J C and Hao Y 2018 IEEE J. Electron Dev. Soc. 6 815
[26] Wang Y B, Xu W H, Han G Q, You T G, Mu F W, Hu H D, Liu Y, Zhang X C, Huang H, Suga T, Ou X, Ma X H and Hao Y 2020 J. Phys. D:Appl. Phys. 54 034004
[27] Zhang L H, Verma A, Xing H L and Jena D 2017 Jpn. J. Appl. Phys. 56 030304
[28] Ma P P, Zheng J, Zhang Y B, Liu Z, Zuo Y H and Cheng B W 2021 Tsinghua Sci. Technol.
[29] Sasaki K, Higashiwaki M, Kuramata A, Masui T and Yamakoshi S 2013 IEEE Electron Dev. Lett. 34 493
[30] He H Y, Orlando R, Blanco M A, Pandey R, Amzallag E, Baraille I and Rérat M 2006 Phys. Rev. B 74 195123
[31] Jian G Z, He Q M, Mu W X, Fu B, Dong H, Qin Y, Zhang Y, Xue H W, Long S B, Jia Z T, Lv H B, Liu Q, Tao X T and Liu M 2018 AIP Adv. 8 015316
[32] Crowell C R 1965 Solid State Electron. 8 395
[33] Long Z, Xia X C, Shi J J, Liu J, Geng X L, Zhang H Z and Liang H W 2020 Acta Phys. Sin. 69 138501 (in Chinese)
[34] Fu B, Jia Z T, Mu W X, Yin Y R, Zhang J and Tao X T 2019 J. Semicond. 40 011804
[1] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[2] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[3] Fast-switching SOI-LIGBT with compound dielectric buried layer and assistant-depletion trench
Chunzao Wang(王春早), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2022, 31(4): 047304.
[4] Modeling of high permittivity insulator structure with interface charge by charge compensation
Zhi-Gang Wang(汪志刚), Yun-Feng Gong(龚云峰), and Zhuang Liu(刘壮). Chin. Phys. B, 2022, 31(2): 028501.
[5] Terminal-optimized 700-V LDMOS with improved breakdown voltage and ESD robustness
Jie Xu(许杰), Nai-Long He(何乃龙), Hai-Lian Liang(梁海莲), Sen Zhang(张森), Yu-De Jiang(姜玉德), and Xiao-Feng Gu(顾晓峰). Chin. Phys. B, 2021, 30(6): 067303.
[6] Design and simulation of AlN-based vertical Schottky barrier diodes
Chun-Xu Su(苏春旭), Wei Wen(温暐), Wu-Xiong Fei(费武雄), Wei Mao(毛维), Jia-Jie Chen(陈佳杰), Wei-Hang Zhang(张苇杭), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(6): 067305.
[7] A super-junction SOI-LDMOS with low resistance electron channel
Wei-Zhong Chen(陈伟中), Yuan-Xi Huang(黄元熙), Yao Huang(黄垚), Yi Huang(黄义), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2021, 30(5): 057303.
[8] Improved 4H-SiC UMOSFET with super-junction shield region
Pei Shen(沈培), Ying Wang(王颖), Xing-Ji Li(李兴冀), Jian-Qun Yang(杨剑群), Cheng-Hao Yu(于成浩), and Fei Cao(曹菲). Chin. Phys. B, 2021, 30(5): 058502.
[9] Novel Si/SiC heterojunction lateral double-diffused metal-oxide semiconductor field-effect transistor with p-type buried layer breaking silicon limit
Baoxing Duan(段宝兴), Xin Huang(黄鑫), Haitao Song (宋海涛), Yandong Wang(王彦东), and Yintang Yang(杨银堂). Chin. Phys. B, 2021, 30(4): 048503.
[10] Novel fast-switching LIGBT with P-buried layer and partial SOI
Haoran Wang(王浩然), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2021, 30(2): 027302.
[11] Simulation study of high voltage GaN MISFETs with embedded PN junction
Xin-Xing Fei(费新星), Ying Wang(王颖), Xin Luo(罗昕), Cheng-Hao Yu(于成浩). Chin. Phys. B, 2020, 29(8): 080701.
[12] Variable-K double trenches SOI LDMOS with high-concentration P-pillar
Lijuan Wu(吴丽娟), Lin Zhu(朱琳), Xing Chen(陈星). Chin. Phys. B, 2020, 29(5): 057701.
[13] Numerical and analytical investigations for the SOI LDMOS with alternated high-k dielectric and step doped silicon pillars
Jia-Fei Yao(姚佳飞), Yu-Feng Guo(郭宇锋), Zhen-Yu Zhang(张振宇), Ke-Meng Yang(杨可萌), Mao-Lin Zhang(张茂林), Tian Xia(夏天). Chin. Phys. B, 2020, 29(3): 038503.
[14] Breakdown voltage enhancement in GaN channel and AlGaN channel HEMTs using large gate metal height
Zhong-Xu Wang(王中旭), Lin Du(杜林), Jun-Wei Liu(刘俊伟), Ying Wang(王颖), Yun Jiang(江芸), Si-Wei Ji(季思蔚), Shi-Wei Dong(董士伟), Wei-Wei Chen(陈伟伟), Xiao-Hong Tan(谭骁洪), Jin-Long Li(李金龙), Xiao-Jun Li(李小军), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(2): 027301.
[15] A novel high breakdown voltage and high switching speed GaN HEMT with p-GaN gate and hybrid AlGaN buffer layer for power electronics applications
Yong Liu(刘勇), Qi Yu(于奇), and Jiang-Feng Du(杜江锋). Chin. Phys. B, 2020, 29(12): 127701.
No Suggested Reading articles found!