Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 067305    DOI: 10.1088/1674-1056/abe0c7

Design and simulation of AlN-based vertical Schottky barrier diodes

Chun-Xu Su(苏春旭)1, Wei Wen(温暐)2, Wu-Xiong Fei(费武雄)2, Wei Mao(毛维)1, Jia-Jie Chen(陈佳杰)3, Wei-Hang Zhang(张苇杭)1,†, Sheng-Lei Zhao(赵胜雷)1, Jin-Cheng Zhang(张进成)1,‡, and Yue Hao(郝跃)1
1 Key Laboratory of Wide Band-Gap Semiconductors and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China;
2 China Electronic Product Reliability and Environmental Testing Research Institute, Guangzhou 510610, China;
3 Shanghai Academy of Spaceflight Technology, Shanghai 201109, China
Abstract  The key parameters of vertical AlN Schottky barrier diodes (SBDs) with variable drift layer thickness (DLT) and drift layer concentration (DLC) are investigated. The specific on-resistance (Ron,sp) decreased to 0.5 mΩ·cm2 and the breakdown voltage (VBR) decreased from 3.4 kV to 1.1 kV by changing the DLC from 1015 cm-3 to 3×1016 cm-3. The VBR increases from 1.5 kV to 3.4 kV and the Ron,sp also increases to 12.64 mΩ·cm2 by increasing DLT from 4-μ to 11-μ. The VBR enhancement results from the increase of depletion region extension. The Baliga's figure of merit (BFOM) of 3.8 GW/cm2 was obtained in the structure of 11-μ DLT and 1016 cm-3 DLC without FP. When DLT or DLC is variable, the consideration of the value of BFOM is essential. In this paper, we also present the vertical AlN SBD with a field plate (FP), which decreases the crowding of electric field in electrode edge. All the key parameters were optimized by simulating based on Silvaco-ATLAS.
Keywords:  aluminum nitride      Schottky barrier diodes      specific on-resistance Ron      sp      breakdown voltage VBR  
Received:  20 November 2020      Revised:  06 January 2021      Accepted manuscript online:  28 January 2021
PACS:  73.61.Ey (III-V semiconductors)  
  73.30.+y (Surface double layers, Schottky barriers, and work functions)  
  51.50.+v (Electrical properties)  
Fund: Project supported by Key-Area Research and Development Program of Guangdong Province, China (Grant Nos. 2020B010174001 and 2020B010171002) and Ningbo Science and Technology Innovation 2025 (Grant No. 2019B10123).
Corresponding Authors:  Wei-Hang Zhang, Jin-Cheng Zhang     E-mail:;

Cite this article: 

Chun-Xu Su(苏春旭), Wei Wen(温暐), Wu-Xiong Fei(费武雄), Wei Mao(毛维), Jia-Jie Chen(陈佳杰), Wei-Hang Zhang(张苇杭), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃) Design and simulation of AlN-based vertical Schottky barrier diodes 2021 Chin. Phys. B 30 067305

[1] Kuzmik J 2001 IEEE Electron Device Lett. 22 510
[2] Palacios T, Chakraborty A, Rajan S, Poblenz C, Keller S, Denbaars S P, Speck J S and Mishra U K 2005 IEEE Electron Device Lett. 26 781
[3] Lee J G, Park B R, Cho C H, Seo K S and Cha H Y 2013 IEEE Electron Device Lett. 34 214
[4] Zhou Q, Jin Y, Shi Y Y, Mou J Y, Bao X, Chen B W and Zhang B 2015 IEEE Electron Device Lett. 36 660
[5] Zhou Q, Yang Y, Hu K, Zhu R P, Chen W J and Zhang B 2017 IEEE Transactions on Industrial Electronics. 64 8971
[6] Wang H, Kwan A M H, Jiang Q and Chen K J 2015 IEEE Trans. Electron Devices 62 1143
[7] Horii T, Miyazaki T, Saito Y, Hashimoto S, Tanabe T and Kiyama M 2009 Materials Science Forum. 615-617 963
[8] Saitoh Y, Sumiyoshi K, Okada M, Horii T and Nakamura T 2013 Appl. Phys. Express 3 081001
[9] Lei Y, Shi H, Lu H, Chen D, Zhang R and Zheng Y 2013 J. Semicond. 34 054007
[10] Tanaka N, Hasegawa K, Yasunishi K, Murakami N and Oka T 2015 Appl. Phys. Express 8 071001
[11] Ozbek A M and Baliga B J 2011 IEEE Electron Device Lett. 32 300
[12] Li Y, Shen B, Wang M, Yin R, Zhang J, Tao M and Wen C P 2020 IEEE Electron Device Lett. 41 329
[13] Bian Z K, Zhang J C, Zhao S L, Zhang Y C and Hao Y 2020 IEEE Electron Device Lett. 41 1476
[14] Irokawa Y, Villora E A G and Shimamura K 2012 J. Appl. Phys. 51 040206
[15] Fu H, Baranowski I, Huang X, Chen H, Lu Z and Montes J 2017 IEEE Electron Device Lett. 38 1286
[16] Kinoshita T, Nagashima T, Obata T, et al. 2015 J. Appl. Phys. 8 061003
[17] Baliga B J 2008 Fundamentals of Power Semiconductor Devices pp. 96-97, 171
[18] Sandupatla A, Arulkumaran S, Ng G I, Ranjan K, Deki M, Nitta S, Honda Y and Amano H 2019 AIP Adv. 9 045007
[1] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[2] Lateral β-Ga2O3 Schottky barrier diode fabricated on (-201) single crystal substrate and its temperature-dependent current-voltage characteristics
Pei-Pei Ma(马培培), Jun Zheng(郑军), Ya-Bao Zhang(张亚宝), Xiang-Quan Liu(刘香全), Zhi Liu(刘智), Yu-Hua Zuo(左玉华), Chun-Lai Xue(薛春来), and Bu-Wen Cheng(成步文). Chin. Phys. B, 2022, 31(4): 047302.
[3] A simple method to synthesize worm-like AlN nanowires and its field emission studies
Qi Liang(梁琦), Meng-Qi Yang(杨孟骐), Chang-Hao Wang(王长昊), and Ru-Zhi Wang(王如志). Chin. Phys. B, 2021, 30(8): 087302.
[4] A super-junction SOI-LDMOS with low resistance electron channel
Wei-Zhong Chen(陈伟中), Yuan-Xi Huang(黄元熙), Yao Huang(黄垚), Yi Huang(黄义), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2021, 30(5): 057303.
[5] Influence comparison of N2 and NH3 nitrogen sources on AlN films grown by halide vapor phase epitaxy
Jing-Jing Chen(陈晶晶), Jun Huang(黄俊), Xu-Jun Su(苏旭军), Mu-Tong Niu(牛牧童), Ke Xu(徐科). Chin. Phys. B, 2020, 29(7): 076802.
[6] Variable-K double trenches SOI LDMOS with high-concentration P-pillar
Lijuan Wu(吴丽娟), Lin Zhu(朱琳), Xing Chen(陈星). Chin. Phys. B, 2020, 29(5): 057701.
[7] Effect of AlN coating on hydrogen permeability and surface structure of VT6 alloy by vacuum arc ion plating
Zi-Yi Ding(丁子祎). Chin. Phys. B, 2019, 28(10): 108101.
[8] Review of gallium oxide based field-effect transistors and Schottky barrier diodes
Zeng Liu(刘增), Pei-Gang Li(李培刚), Yu-Song Zhi(支钰崧), Xiao-Long Wang(王小龙), Xu-Long Chu(褚旭龙), Wei-Hua Tang(唐为华). Chin. Phys. B, 2019, 28(1): 017105.
[9] Influence of dry-etching damage on the electrical properties of an AlGaN/GaN Schottky barrier diode with recessed anode
Zhong Jian (钟健), Yao Yao (姚尧), Zheng Yue (郑越), Yang Fan (杨帆), Ni Yi-Qiang (倪毅强), He Zhi-Yuan (贺致远), Shen Zhen (沈震), Zhou Gui-Lin (周桂林), Zhou De-Qiu (周德秋), Wu Zhi-Sheng (吴志盛), Zhang Bai-Jun (张伯君), Liu Yang (刘扬). Chin. Phys. B, 2015, 24(9): 097303.
[10] Breakdown characteristics of AlGaN/GaN Schottky barrier diodes fabricated on a silicon substrate
Jiang Chao (蒋超), Lu Hai (陆海), Chen Dun-Jun (陈敦军), Ren Fang-Fang (任芳芳), Zhang Rong (张荣), Zheng You-Dou (郑有炓). Chin. Phys. B, 2014, 23(9): 097308.
[11] Resonance-mode effect on piezoelectric microcantilever performance in air, with a focus on the torsional modes
Qiu Hua-Cheng (邱华诚), Dara Feili, Wu Xue-Zhong (吴学忠), Helmut Seidel. Chin. Phys. B, 2014, 23(2): 027701.
[12] F4-TCNQ concentration dependence of the current–voltage characteristics in the Au/P3HT:PCBM:F4-TCNQ/n-Si (MPS) Schottky barrier diode
E. Yağlıoğlu, Ö. Tüzün Özmen. Chin. Phys. B, 2014, 23(11): 117306.
[13] Performance of La2O3/InAlN/GaN metal–oxide–semiconductor high electron mobility transistors
Feng Qian(冯倩), Li Qian(李倩), Xing Tao(邢韬) Wang Qiang(王强), Zhang Jin-Cheng(张进成), and Hao Yue(郝跃) . Chin. Phys. B, 2012, 21(6): 067305.
[14] Determination of the series resistance under the Schottky contacts of AlGaN/AlN/GaN Schottky barrier diodes
Cao Zhi-Fang(曹芝芳), Lin Zhao-Jun(林兆军), LŰ Yuan-Jie(吕元杰), Luan Chong-Biao(栾崇彪), Yu Ying-Xia(于英霞), Chen Hong(陈弘), and Wang Zhan-Guo(王占国) . Chin. Phys. B, 2012, 21(1): 017103.
[15] Electrical characteristics of SiGe-on-insulator nMOSFET and SiGe-silicon-on-aluminum nitride nMOSFET
Liu Hong-Xia(刘红侠), Li Bin(李斌), Li Jin(李劲), Yuan Bo(袁博), and Hao Yue(郝跃). Chin. Phys. B, 2010, 19(12): 127303.
No Suggested Reading articles found!